跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳弘虎
研究生(外文):Hong-Hu Chen
論文名稱:不對稱開口薄壁梁元素之一致性共旋轉推導法及其在挫屈分析的應用
論文名稱(外文):A CONSISTENT COROTATIONAL FORMULATION FOR ASYMMETRIC THIN-WALLED OPEN-SECTION BEAMS AND ITS APPLICATION IN BUCKLING ANALYSIS
指導教授:蕭國模
指導教授(外文):Kuo-Mo Hsiao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:145
中文關鍵詞:開口薄壁梁挫屈共旋轉推導法
外文關鍵詞:THIN-WALLED OPEN-SECTION BEAMSBUCKLINGCOROTATIONAL FORMULATION
相關次數:
  • 被引用被引用:4
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主要目的是以一致性共旋轉法推導一個不對稱開口薄壁梁元素,並探討其節點內力及切線剛度矩陣中一些高次項對結構之非線性行為及挫屈負荷的影響。
本文中推導的梁元素有兩個節點,每個節點有7個自由度。本文中將元素節點定在斷面剪心,並取剪心軸當作梁元素變形的參考軸。本研究在當前梁元素變形的位置上建立元素座標,並在其上描述元素的變形。本研究利用虛功原理,完整的幾何非線性梁理論的一致性二次線性化推導元素節點內力,本研究的節點內力除了保留全部的二次項外還保留了軸向扭轉率的三階項。
本研究用虛功原理推導梁元素節點內力時,元素節點內力所作的虛功是在元素受虛位移擾動前的元素座標上推導,但元素應力所作的虛功是在元素受虛位移擾動後的元素座標上推導,即將元素座標建立在元素受虛位移擾動後的位置,並在其上定義元素的變形及推導虛應變。本研究推導的元素節點內力能滿足靜力的平衡。本研究在推導元素的節點內力時,扣除了虛位移中剛體運動的部分,所以不能僅由元素節點內力對節點參數微分求得切線剛度矩陣,還要考慮元素節點內力在剛體運動時因方向改變造成的元素節點內力的改變。
本文中採用牛頓-拉福森法配合定弧長控制法的增量迭帶法解非線性平衡方程式,以系統切線剛度矩陣之行列式值為零當作挫屈準則,本研究以數值例題分析梁結構的幾何非線性行為及挫屈負荷,並與文獻比較,以說明本研究提出的方法的正確性。因隨著元素數目的增加,梁元素之長度,剪心軸側向位移的一次微分,及扭轉角會趨近於零,所以元素節點內力及剛度矩陣中含這些量之項亦會趨近於零,故本研究亦以數值例題探討這些項對元素之收斂性分析的影響。

A consistent procedure is proposed to derive the element internal nodal force and tangent stiffness matrix for asymmetric thin-walled beam element with open section using the virtual work principle combined with co-rotational total Lagrangian formulation. The effects of some higher order terms of element node forces and tangent stiffness matrix on the buckling load and postbuckling behavior of beam structures.
In this thesis, a two-node element with seven degrees of freedom per node is developed. The element nodes are chosen to be the shear center of end section of the element. The shear center axis is employed as the reference axis of the beam element. The element deformation are referred to the undeformed geometry of the beam element and described in element coordinates which are constructed at the current configuration of the beam element. The element internal nodal forces are systematically derived by using virtual work principal and a consistent second-order linearization of the fully geometrically nonlinear beam theory. In this study, the terms up to the second order of rotation parameters and their spatial derivatives and the third-order term of twist rate are retained in the element nodal forces.
When the virtual displacement method is used to derive the element nodal force, the external virtual work done by the element internal nodal force and the virtual nodal displacement are defined in the current element coordinates, which are regarded as fixed coordinates. However, the internal virtual work done by the element stress and the virtual strain corresponding to the virtual nodal displacement are defined in an element coordinates which are constructed at the disturbed configuration of the beam element corresponding to virtual nodal displacement. Note that the rigid body motion part in the virtual displacement is eliminated in the derivation of the internal virtual work. The tangent stiffness matrix is derived from the increment of the element nodal force corresponding to an infinitesimal incremental displacement. The increment of the element nodal force comprises the direction change of the element internal nodal force corresponding to the rigid body motion part in the infinitesimal incremental displacement and the increment of the element nodal force corresponding to the deformation part in the infinitesimal incremental displacement.
An incremental-iterative method based on the Newton-Raphson method combined with constant arc length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations. The zero value of the tangent stiffness matrix determinant of the structure is used as the criterion of the buckling state. To verify the accuracy of present formulation, numerical examples are studied and compared with published experimental results and numerical results for geometrically nonlinear behavior and nonlinear buckling load. With the increase of element number, the length of beam element, the twist angle and slopes of the beam axis will approach to zero. Thus, The corresponding terms in element internal nodal forces and element stiffness matrices will approach to zero too. To investigate the effects of these terms on the convergent solution of buckling load and deflections for beam structures, convergence tests are carried out for different numerical examples.

目 錄 :
中文摘要………………………………………………… Ⅰ
英文摘要………………….………………………… Ⅲ
誌謝.……..……………………………………………………… Ⅴ
目錄.……..……………………………………………………… Ⅵ
表目錄..………………………………………………………… Ⅷ
圖目錄..………………………………………………………… Ⅸ
第一章 導論 ……………………………………………………… 1
1.1 研究動機與目的 ……………………………………… 1
第二章 理論推導 ……………………………………………….. 4
2.1 基本假設 ……………………………………………… 4
2.2 座標系統 …………………………………………….. 4
2.3 旋轉向量 …………………………………………….. 5
2.4 梁元素之變形描述 ………………………………….. 6
2.4.1 梁之剪心軸的位移 ………………………….. 6
2.4.2 元素座標與元素斷面座標之關係 ………….. 7
2.4.3 元素斷面座標、元素座標、與元素節點的旋轉參數之
決定…………………………………………………… 9
2.4.4 梁元素之位移與應變 ……………………….. 11
2.5 節點參數與節點力 ……………………………………. 19
2.5.1 系統節點參數與節點力 …………………….. 19
2.5.2 元素節點參數與節點力 …………………….. 19
2.5.3 元素顯節點參數的擾動與隱節點參數的擾動關係 ..............................................20
2.5.4 元素顯節點內力與隱節點內力的關係…….... 25
2.6 元素節點內力之推導 …………………………….. 27
2.7 元素剛度矩陣 ……………………………………….. 34
2.8 與變形位置相關之節點作用力與負荷剛度矩陣 ….. 42
2.9 系統平衡方程式與收斂準則 ……………………….. 45
2.10 系統切線剛度矩陣 …………………………………. 46
第三章 數值計算方法與程序 ……………………………….. 47
3.1 增量迭代法 ………………………………………….. 47
3.2 二分法 ……………………………………………….. 48
3.3 N循環迭代法 ………………………………………….. 49
第四章 數值例題與結果 ……………………….…………….. 51
第五章 結論與展望 ….………………………….…………….. 58
附錄A ………………...…………………………………………. 60
參考文獻 …………………………………………………………. 64
表 目 錄
表4.1 例題一之斷面性質……………………………………. 68
表4.2 例題一之挫屈扭矩……………………………………. 69
表4.3 例題二之斷面性質...………………………………….. 71
表4.4 例題二之挫屈彎矩…………………………………….. 72
表4.5 例題三之斷面性質...….…………………..………... 73
表4.6 例題四之斷面性質…………………………..………... 74
表4.7 例題四之挫屈負荷(不考慮梁的重量)………………... 75
表4.8 例題四之挫屈負荷(考慮梁的重量)..……..………... 75
表4.9 例題五之斷面性質......…………………..………... 76
表4.10 例題六之斷面性質….……………………..………... 77
表4.11 例題七之斷面性質.………………………..………... 78
表4.12 例題八之斷面性質...……………………..………... 79
表4.13 例題九之斷面性質.………………………..………... 80
表4.14 例題十之斷面性質…………………………..………... 81
表4.15 例題十一之斷面性質..……………………..………... 82
圖 目 錄
圖2.1 元素座標與元素截面座標 .………………………… 83
圖2.2 旋轉向量 ……………………………………………… 84
圖2.3 決定 軸與 軸之第一步驟………………………………… 85
圖2.4 決定 軸與 軸之第二步驟 ……………………………… 86
圖2.5 圓盤受力偶作用機制圖…………………………………… 87
圖2.6 圓盤受力型態之 力矩示意圖…………………………… 88
圖2.7 剛性桿受力作用機制圖 ………………………………… 89
圖4.1 雙對稱I型斷面幾何圖 ……………………….…….…… 90
圖4.2 單對稱角型斷面幾何圖 ………………………………… 91
圖4.3 單對稱槽型斷面幾何圖 ………………………………… 92
圖4.4 不對稱Z型斷面幾何圖 ……..…………….….……… 93
圖4.5 不對稱角型斷面幾何圖 ………………………...……… 94
圖4.6 不對稱槽型斷面幾何圖 ………………………...……… 95
圖4.7 懸臂梁自由端承受扭矩之結構圖………………………… 96
圖4.8 簡支梁兩端承受均勻彎矩之結構圖……………………… 97
圖4.9 等腰直角架構兩端承受彎矩之結構圖…………………… 98
圖4.10 梁端點 在 方向之負荷-位移曲線圖………………… 99
圖4.11 架構頂點 在 方向之負荷-位移曲線圖……………… 100
圖4.12 架構頂點 在 方向之負荷-位移曲線圖……………… 101
圖4.13 懸臂梁自由端承受垂直力之結構圖..………………… 102
圖4.14 梁自由端 點在 方向之負荷-位移曲線圖…………… 103
圖4.15 梁自由端 點在 方向之負荷-位移曲線圖…………… 104
圖4.16 梁中點承受扭矩及兩端承受固定彎矩之結構圖.....… 105
圖4.17 梁端中點 之負荷-扭轉角曲線圖………………… 106
圖4.18 懸臂梁自由端承受垂直力之結構圖...……………… 107
圖4.19 梁自由端 點在 方向之負荷-位移曲線圖………… 108
圖4.20 梁自由端 點在 、 方向之負荷-位移曲線圖……… 109
圖4.21 簡支梁兩端承受偏心軸力之結構圖….………… 110
圖4.22 梁端點 在 方向、中點 在 方向之負荷-位移曲線圖………………………………….................... 111
圖4.23 梁中點C在 方向之負荷-位移曲線圖………………… 112
圖4.24 懸臂梁自由端承受偏心軸力之結構圖...……………… 113
圖4.25 梁自由端在 、 及 方向之負荷-位移曲線圖…..… 114
圖4.26 懸臂直角構架自由端承受水平力之結構圖.........… 115
圖4.27 梁自由端在 方向之負荷-位移曲線圖(Case a)….…. 116
圖4.28 梁自由端在 方向之負荷-位移曲線圖(Case a).……. 117
圖4.29 梁自由端在 方向之負荷-位移曲線圖(Case a)…... 118
圖4.30 梁自由端在 方向之負荷-位移曲線圖(Case b)….... 119
圖4.31 梁自由端在 方向之負荷-位移曲線圖(Case b)…….. 120
圖4.32 梁自由端在 方向之負荷-位移曲線圖(Case b)…... 121
圖4.33 懸臂梁自由端承受垂直力之結構圖....……………… 122
圖4.34 梁自由端在 、 及 方向之負荷-位移曲線圖
(Case a)………………………………………………………….. 123
圖4.35 梁自由端在 、 及 方向之負荷-位移曲線
(Case b)……………………………………………………….... 124
圖4.36 梁自由端在 、 及 方向之負荷-位移曲線圖
(Case c)……………………………………………………...... 125
圖4.37 梁自由端在 、 及 方向之負荷-位移曲線圖
(Case d)………………………………………………………….. 126
圖4.38 梁自由端在 、 及 方向之負荷-位移曲線圖
(Case e)……………………………………………………….…. 127
圖4.39 梁自由端在 、 及 方向之負荷-位移曲線圖
(Case f)………………………………………………….……... 128
圖4.40 懸臂梁自由端承受軸向力之結構圖...………………… 129
圖4.41 梁自由端 點之負荷-扭轉角曲線圖…………………… 130
圖4.42 梁自由端 點在 、 方向之負荷-位移曲線圖……..… 131
圖4.43 梁自由端 點在 方向之負荷-位移曲線圖…………… 132

[1] P. Vacharajittiphan, S.T. Woolcock and N.S. Trahair, Effect of in-plane deformation on lateral buckling, J. Struct. Mech. 3(1) (1974) 29-60.
[2] M.M. Attard, Lateral buckling analysis of beams by the FEM, Comput. Struct. 23 (1985) 217-231.
[3] Y.L. Pi and N.S. Trahair, Prebuckling deflections and lateral buckling: part I- theory, J. Struct. Engrg. ASCE 118(11) (1992) 2949-2966.
[4] Y.L. Pi and N.S. Trahair, Prebuckling deflections and lateral buckling: part II- application, J. Struct. Engrg. ASCE 118(11) (1992) 2967-2985.
[5] J.C. Simo and L. Vu-Quoc, The role of non-linear theories in transient dynamic analysis of flexible structures, J. Sound Vib. 119 (1987) 487-508.
[6] K.M. Hsiao, R.T. Yang and W.Y. Lin, A consistent finite element formulation for linear buckling analysis of spatial beams, Comput. Methods Appl. Mech. Engrg. 156 (1998) 259-276.
[7] K.M. Hsiao, Corotational total Lagrangian formulation for three- dimensional beam element, AIAA J. 30(3) (1992) 797-804.
[8] 詹弼修, 三維梁元素非線性分析之改進研究, 交通大學機械工程學系碩士論文, 臺灣, 新竹, (1997).
[9] K.M. Hsiao and W.Y. Lin, Co-rotational Formulation for Geometric Nonlinear Analysis of Doubly Symmetric Thin-Walled Beams, Comput. Methods Appl. Mech. Engrg.190 (2001) 6023-6052
[10] 林文一, 薄壁開口梁之幾何非線性挫屈及挫屈後行為研究, 交通大學機械工程學系博士論文,臺灣,新竹, (1999).
[11] K.M. Hsiao and W.Y. Lin, A co-rotational finite element formulation for buckling and postbuckling analysis of spatial beams, Comput. Methods Appl. Mech. Engrg. 188 (2000) 567-594
[12] K.M. Hsiao and W.Y. Lin, A co-rotational formulation for thin-walled beams with monosymmetric open section, Comput. Methods Appl. Mech. Engrg. 190 (2000) 1163-1185
[13] 游敬義, 雙對稱開口薄壁梁元素之一致性共旋轉推導法及其在挫屈分析的應用, 交通大學機械工程學系碩士論文,新竹, (2000).
[14] J.H. Argyris, O. Hilpert, G.A. Malejannakis, and D.W. Scharpf, On the Geometrical Stiffness of a Beam in Space - a Consistent V.W. Approach, Comp. Meth. Appl. Mech. Eng. 20 ( 1979) 105-131.
[15] J.M. Anderson and N.S. Trahair, Stability of monosymmetric beams and cantilevers, J. Struct. Div. ASCE 98(1) (1972) 269-286.
[16] Z. P. Bazant and M. Nimeriri, Large deflection spatial buckling of thin-walled beams and frames, J. Engrg. Mech. Div. ASCE 99(EM6) (1973) 1259-1281.
[17] N.S. Trahair and S.T. Woolcock , Effect of major axis curvature on I-beam stability, J. Engrg. Mech. Div. ASCE 99(EM1) (1974) 85-98.
[18] J. L. Meek and P. Swannell, The lateral-torsional buckling problem reviewed from virtual displacement principles, Civ. Engrg. Trans. Australia CE19(2) (1977) 153-161.
[19] T.M. Roberts and Z.G. Azizian, Influence of pre-buckling displacement on the elastic critical loads of thin walled bars of open cross section, Int. J. Mech. Sci. 25(2) (1983) 93-104.
[20] Z. M. Elias, Theory and Methods of Structural Analysis (John Wiley & Sons, NY, 1986).
[21] Y.B. Yang and W. McGuire, Joint rotation and geometric nonlinear analysis, J. Struct. Engrg. ASCE 112(4) (1986) 879-905.
[22] S. L. Chan and S. Kitipornchai, Geometrically nonlinear analysis of asymmetrical thin-walled beam-columns, Engrg. Struct. 9 (1987) 243-254.
[23] M.M. Attard, The elastic flexural-torsional response of thin-walled open beams, Ph.D. Thesis, University of New South Wales, Australia, 1984.
[24] F. Gruttmann, R. Sauer and W. Wagner, A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections, Comput. Methods Appl. Mech. Engrg. 160 (1998) 383-400.
[25] H. Chen and G. E. Blandford, Thin-walled space frames. Part II: Algorithmic details and applications, J. Struct. Engrg. ASCE 117(8) (1991) 2521-2539.
[26] Engel and J.N. Goodier, Measurements of torsional stiffness changes and instability due to tension, compression and bending, J. Appl. Mech. ASME (1953) 553-560.
[27] D.J. Dawe, Matrix and Finite Element Displacement Analysis of Structures, 1Oxford University, N.Y., 1984.
[28] H. Goldstein, Classical Mechanics, Addision-Wesley Publishing Company, 1980.
[29] M. Borri, F. Mello, and S.N. Atluri, Variational Approaches for Dynamics and Time-Finite-Elements : Numerical Studies, Comp. Mech. 7 (1990) 49-76.
[30] J.H. Argyris, P.C. Dunne, and D.W. Scharpf, On Large Displacement-small Strain Analysis of Structures with Rotation Degree of Freedom, Comp. Meth. Appl. Mech. Eng. 14 (1978) 401-451; 15 (1978) 99-135.
[31] A.F. Saleeb, T.Y.P. Chang, and A.S. Gendy, Effective Modelling of Spatial Buckling of Beam Assemblages, Accounting for Warping Constraints and Rotation-Dependency of Moments, Int. J. Num. Meth. Eng. 33 (1992) 469-502.
[32] H. Ziegler, Principles of Structural Stability, Birkhauser Verlag Basel., 1977.
[33] M.A. Crisfield, A Fast Incremental/Iterative Solution Procedure That Handles Snap Through, Computers and Structures 13 (1981) 55-62.
[34] 賴文斌, 三維梁非線性挫屈及挫屈後行為研究, 交通大學機械工程學系碩士論文,臺灣,新竹,(1994).
[35] K.M. Hsiao, H.J. Horng, and Y.R. Chen, A Corotational Procedure That Handles Large Rotations of Spatial Beam Structures, Computers and Structures 27 (6) (1987) 769-781.
[36] B.A. Izzuddin, An Eulerian approach to the large displacement analysis of thin-walled frames, Proc. Instn. Civ. Engrs. Struct. Build., London, England, 110(1) (1995) 50-65.
[37] A. Conci and M. Gattass, Natural coordinates for geometric nonlinear analysis of thin-walled frames, Int. J. Numer. Meths. Engrg. 30 (1990) 207-231.
[38] Y.B. Yang and W. McGuire, Joint rotation and geometric nonlinear analysis, J. Struct. Engrg. ASCE, 112(4) (1986) 879-905.
[39] L.A. Soltis and P. Christiano, Finite deformation of biaxially loaded columns, J. Struct. Div. ASCE 98 (1972) 2647-2662.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top