跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭琇方
研究生(外文):Hsiu-Fang Hiao
論文名稱:利用Mirage方法量測非等向性薄板的熱擴散係數
論文名稱(外文):Measurement of Thermal Diffusivity Components of Anisotropic Platelike Samples by Mirage Method
指導教授:林振德林振德引用關係
指導教授(外文):Jenn-Dear Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:66
中文關鍵詞:熱擴散係數繞曲飄移量非等向性薄板
外文關鍵詞:Thermal DiffusivityMirage DeflectionAnisotropic Platelike
相關次數:
  • 被引用被引用:3
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用Mirage方法量測非等向性薄板的熱擴散係數,文中建立一個三維的熱擴散方程式,並且利用Mirage 飄移量(deflection)來找到熱擴散係數和飄移量的關係,進而找出此方法逆運算沿平面和垂直平面方向熱擴散係數的技巧。此量測方法是利用一道雷射光加熱,另一道雷射光則偵測空氣介質的折射率分佈的不均勻,藉由偵測光經過空氣介質,量測光經過介質的飄移現象推導出物體的熱擴散係數。理論分析顯示:薄板的光學和熱物理性質都會影響熱擴散係數的量測,並且偵測的雷射光與薄板的相對位置和雷射光的光束大小也會對熱擴散係數的量測有影響,這些因素之影響在本論文中均被加以詳細討論。

This thesis purposes to establish the measurement theory of anisotropic thermal diffusivity components for platelike samples by photothermal deflection spectroscopy (Mirage method). The main focus of the tasks will be on two subjects. One is the complete formulation of three-dimensional heat transport phenomenon in association with the photothermal deflection (mirage effect) technique for a platelike sample. The other is the use of mirage method for measuring the anisotropic thermal diffusivity components for platelike samples. In the measurement theory, the relation of the photodeflection versus thermal diffusivity components would be derived and the influence of the optical property of the platelike sample be analyzed. Furthermore, the effects of the height of probe beam, the size of the pumping beam will also be analyzed. In addition, the effect of thermal diffusivity components of anisotropic platelike samples on the measurements of the properties associated with the mirage method is discussed.

目錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 5
第二章 物理與數學模式 6
2.1 量測物理模式 6
2.2 偵測光經過空氣介質所得到的飄移量 11
第三章 數值計算 14
3.1 計算飄移量的大小 14
3.2 逆運算的方法 15
第四章 結果與討論 17
4.1 影響飄移量大小的因數 17
4.2 試片厚度的改變與飄移量之關係 19
4.3 改變加熱光源半徑大小 19
4.4 偵測光源與試片表面的距離 20
4.5 逆運算的結果分析 21
第五章 結論 24
參考文獻 25
圖表 28

參考文獻
1.I. Hatta, Y. Sasuga, R. Kato, and A. Maesono, “Thermal Diffusivity Measurement of Thin Films by Means of An Ac Calormetric Method,” Review of Scientific Instruments, Vol. 56, pp. 1643, 1985.
2.L. J. Sheu and J.D. Lin, “An Analysis for Measurement of thermal Diffusivity Components of Anisotopic Platelike Samples by AC Calorimetric Method,” Japanese Journal of Applied Physics, Vol. 39, pp. 690, 2000.
3.W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” Journal of Applied Physics, Vol. 32, pp. 1679, 1961.
4.D. G. Cahill, H. E. Fischer, T. Klitaner, E. T. Swartz, and R. O. Pohl, “Thermal Conductivity of Thin Films: Measurement and Understanding,” Journal of Vacuum Science and Technology, A7, pp. 1259, 1989.
5.F. Volklein, and T. Starz, “Thermal Conductivity of Thin Films- Experimental Methods and Theoretical Interpretation,” Proc. 16th Int. Conf. Thermoelectrics, ICT’97, 711, IEEE Cat. No 97th8291, 1997.
6.D. G. Cahill, “Thermal Conductivity Measurement form 30k to 750k — The 3-Omega Method,” Review Scientific Instruments, Vol. 61, pp. 802, 1990.
7.D. Fournier, A. C. Boccara, and J. Badoz, “Thermo-Optical Spectroscopy: Detection by the Mirage Effect,” Applied Physics Letters, Vol. 36, pp. 130, 1980.
8.A. Salazar, A. Sanchez-Lavega, and J. Fernandez, “Thermal Diffusivity Measurements in Solids by the Mirage Technique: Experimental Results,” Journal of Applied Physics, Vol. 69, pp. 1216, 1991.
9.W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Applied Optics, Vol. 20, pp. 1333, 1981.
10.P.K. Kuo, M. J. Lin, C. B. Reyes, L. D. Favro, R. L. Thomas, D.S. Kim, and Shu-Yi Zhang, “Mirage —Effect Measurement of Thermal Diffusivity Part I:Experiment,” Canadian Journal of Physics, Vol. 64, pp. 1165, 1986.
11.P.K. Kuo, E. D. Sendler, L. D. Favro, and R. L. Thomas, “Mirage Effect Measurement of Thermal Diffusivity PartII: experiment,” Canadian Journal of Physics, Vol. 64, pp. 1168, 1986.
12.P. K. Kuo, R.L. Thomas, L. J. Inglehart, M.J. Lin, and L. D. Favro, “Thermal Diffusivity in Pure and Coated Materials,” Review of Progress in Quantitative Nondestructive Evaluation Vol. 4B, pp. 859, 1985.
13.R.L. Thomas, P.K. Kuo, L. J. Inglehart, E. D. Sendler, M.J. Lin, L. D. Favro, “Theory of Mirage Effect Detection of Thermal Waves in Solids,” Review of Progress in Quantitative Nondestructive Evaluation Vol. 4B, pp.745, 1985.
14.A. Salazar, A. Sanchez-Lavega, and J. Fernandez, “Theory of Thermal Diffusivity Determination by the “Mirage” Technique in Solids,” Journal of Applied Physics, Vol. 65, pp. 4150, 1989.
15.A. Salazar, A. Sánchez-Lavega and A. Ocariz, “Thermal Diffusivity Anistropic Materials by Photothermal Methods,” Journal of Applied Physics, Vol. 79, pp. 3984, 1996.
16.A. M. Wu, Y. L. Du, X. P. Wang, J. W. Fang, S. Y. Zhang and S. Sheng, “Determination of the C-axis Thermal Diffusivity in YBa2Cu3O7 - Thin Film by Mirage Technique,” Physics C, Vol. 282-287, pp. 659, 1997.
17.A. Hadj-Sahraoui, G. Louis, B. Mangeot and P. Peretti and J. Billard, “Liquid-Crystal Phase Transitions of Thin Layers: A Photo Thermal Analysis,” Physical Review A, Vol. 44, pp. 5080, 1991.
18.X. Quelin, B. Perrin, G. Louis, and P. Peretti, “Three—Dimensional Thermal—Conductivity—Tensor Measurement of a Polymer Crystal by Photothermal Probe-Beam Deflection,” Physical Review B, Vol. 48, pp. 3677, 1993.
19.W. Hurler, M. Pietralla, A. Hammerschmidt, “Determination of Thermal Properties of Hydrogenated Amorphous Carbon Films Via Mirage Effect Measurements,” Diamond and Related Materials, Vol. 4, pp. 954, 1995.
20. A. Salazar and A. Sánchez-Lavega, “Thermal Diffusivity Measurements Using Linear Relations From Photothermal Wave Experiments,” Review of Scientific Instruments, Vol. 65, pp. 2896, 1994.
21. M. Bertolotti, G. L. Liakhou, R. Li Voti, S. Paoloni, and C. Sibilia, “Analysis of The Photothermal Deflection Technique in the Surface Reflection Scheme: Theory and Experiment,” Journal of Applied Physics, Vol. 83, pp. 966, 1998.
22.M. Bertolotti, R. Li Voti, G. Liakhou, and C. Sibilia, “On the Photodeflection Method Applied to Low Thermal Diffusivity Measurements,” Review of Scientific Instruments, Vol. 64, pp. 1576, 1993.
23.H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University, London, 1959.
24.M.N. Ozisik, Heat Conduction, Wiley, New York, 1980.
25.M. Bertolotti and R. Li Voti, “On the Photodeflection Method Applied to Low Thermal Diffusivity Measurements,” Review Scientific Instruments, Vol. 64, pp. 1576, 1993.
26.J.J Chuang “Theory and Experiment of Thermal and Optical Properties Measurements for Semitransparent Materials,” Ms. Thesis, Institute of Mechanical Engineering, National Chiao Tung University, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林碧珍(民80)。經由數學解題啟發數學的理解。國教世紀,27(3),2-5。
2. 邱上真(民82)。國小中年級數學科解題歷程導向之評量。特殊教育與復健學報,2,235-271。
3. 何縕琪、林清山(民83)。表徵策略教學對提升國小低解題正確率學生解題表現之效果研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27,259-279。
4. 古明峰(民88)。加減法文字題語意結構、問題難度及解題關係之探討。新竹師院學報, 12, 1-25。
5. 古明峰(民87)。數學應用題的解題認知歷程之探討。教育研究資訊, 6(3), 63-77。
6. 吳德邦、馬秀蘭(民76)。以問題解決為導向的數學教學模式。國教輔導,26(9、10),7-20。
7. 林福來(民82)。數學概念的瞭解。國教之聲,27(1),18-23。
8. 許良榮(民85)。圖形與科學課文學習關係的探討。教育研究資訊,4(4),121-131。
9. 黃幸美(民86)。兒童的概念學習、解題思考與迷思概念。教育研究雙月刊,55,55-60 。
10. 黃敏晃(民76)。如何解數學題?數學解題策略簡介。科學月刊,18,515-522。
11. 鍾雅婷(民89)。學習策略教學對國小六年級學童閱讀理解成效之研究。國立屏東師範學院國民教育研究所碩士論文。
12. 羅素貞(民85)。問題表徵與問題解決。屏東師院學報,9,149-176。
13. 譚寧君(民84)。面積概念探討。國民教育,35(7、8),14-19。