(44.192.112.123) 您好!臺灣時間:2021/03/04 06:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾子駿
論文名稱:介電液FC-72在次毫米矩形流道內的冷凝熱流分析
論文名稱(外文):Analysis of condensation heat transfer of dielectric fluid FC-72 in sub-millimeter rectangular channels
指導教授:盧定昶
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:57
中文關鍵詞:冷凝熱傳次毫米壓降矩形流道FC-72
外文關鍵詞:condensationsub-millimeterpressure droprectangular channelFC-72
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以實驗的方法分析介電液FC-72在水力直徑為1mm及0.67mm的矩形渠道內之冷凝熱傳係數及壓降。熱通量、質通量及蒸汽乾度對於冷凝熱傳係數及壓降的影響有詳細的討論。實驗結果顯示冷凝熱傳係數隨著平均乾度、質通量及熱通量增加而增加,壓降也是隨著平均乾度及質通量增加而增加,但熱通量對於壓降並無明顯的影響。目前通用的Akers及Shah冷凝熱傳關係式對本實驗的實驗結果不能作出準確的預測,都低估本實驗結果,因此修正了Akers的熱傳關係式,以應用在小管徑冷凝器的設計。

This thesis experimentally investigated the characteristics of condensation heat transfer and pressure drop for dielectric fluid FC-72 flowing in horizontal rectangular channels. The rectangular channels have two hydraulic diameters of 1mm and 0.67mm. The effects of the heat flux, mass flux and vapor quality of FC-72 on measured condensation heat transfer and pressure drop were examined in detail. The heat transfer coefficient was shown to be higher at a higher vapor quality, at a higher mass flux and at a higher heat flux. The pressure drop was shown to be higher at a higher vapor quality and a higher mass flux, but the heat flux has no effect on pressure drop. The Akers and Shah correlations did not predict well in this study. For practical design of micro heat exchangers, the empirical correlation was proposed to correlate the present data for the heat transfer coefficient.

中文摘要 I
英文摘要 II
目錄 III
表目錄 IV
圖目錄 V
符號說明 VII
第一章 緒論 1
1-1 研究背景與目的 1
1-2 文獻回顧 2
第二章 實驗系統與方法 11
2-1 工作流體性質 11
2-2 實驗系統結構 11
2-3 實驗量測設備 14
2-4 實驗步驟 15
第三章 實驗分析 21
3-1 熱損實驗 21
3-2 測試管內側介電液之兩相冷凝熱傳係數 22
3-3 測試管內側介電液之流動壓降 23
第四章 實驗結果與討論 25
4-1 實驗範圍 25
4-2 不準度與熱損 25
4-3 實驗數據與討論 25
4-4 關係式比較 28
第五章 結論 54
附錄 55
參考文獻 56

[1] Nusselt, W., 1916, “Die Oberflachenkondesation des Wasserdampfes”, Ver. Deut. Ing., Vol.60, pp.541-546.
[2] Bankoff, S.G., 1960, “A Variable Density Single-fluid Model of Two-phase Flow with Particular Reference to Steam-water Flow”, Trans. ASME J. Heat Transfer, Series C, pp.265-272
[3] Wallis, G.B., 1969, “One Dimensional Two-phase Flow”, McGraw-Hill.
[4] Martin, C.S., 1976, “Vertically Downward Two-phase Slug Flow”, J. of Fluids Engng., 98, Series 1, 4, pp.715-722.
[5] Chen, I.Y., Kocamustafaogullari, G., 1987, “Condensation Heat Transfer Studies for Stratified, Cocurrent Two-phase Flow in Horizontal Tubes”, Int J. Heat Mass Transfer, Vol.30, pp.1133-1148.
[6] Deans, D.A., 1955, “Heat Transfer Coefficient for Freon-12 Condensing within a Horizontal Tube”, Master’s Thesis, Rice Inst., Houston, Texas.
[7] Crosser, D.K., 1955, “Condensation Heat Transfer within Horizontal Tube”, Ph.D. Thesis, Rice Inst., Houston, Texas.
[8] Rossen, H.F., 1957, “Heat Transfer during Condensation inside a Horizontal Tube”, Ph.D. Thesis, Rice Inst., Houston, Texas.
[9] Akers, W.W. et al., 1958, “Condensation Heat Transfer within Horizontal Tubes”, Chem. Eng. Prog. Vol.54, pp.89-90.
[10] Shah, M.M., 1979, “A General Correlation for Heat Transfer during Film Condensation inside Pipes”, Int. J. Heat Mass Transfer, Vol.22, pp.547-556.
[11] Rohsenow, W.M., Weber, J.H., Ling, A.T., 1956, “Effect of Vapor Velocity on Laminar and Turbulent-film Condensation”, Trans. ASME, Vol.78, pp.1637-1643.
[12] Barnea, D., Luninski, Y., Taitel, Y., 1983, “Flow Pattern in Horizontal and Vertical Two Phase Flow in Small Diameter Pipes”, The Canadian J. Chem. Eng., Vol.61, pp.617-620.
[13] Yang C-Y, Webb, R.L., 1996, ”Condensation of R-12 in Small Hydraulic Diameter Extruded Aluminum Tubes with and without Micro-fins”, Int. J. Heat Mass Transfer, Vol.39, pp.791-800.
[14] Kaushik, N., Azer, N.Z., 1988, “A General Heat Transfer Correlation for Condensation inside Internally Finned Tubes”, ASHRAE Trans., Vol.94(2), pp.261-279.
[15] Yan Y-Y, Lin T-F, 1999, “Condensation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe”, Int. J. Heat Mass Transfer, Vol.42, pp.697-708.
[16] Wang B-X, Du X-Z, 2000, “Study on Laminar Film-wise Condensation for Vapor Flow in an Inclined Small/Mini-diameter Tube”, Int. J. Heat Mass Transfer, Vol.43, pp.1859-1868.
[17] 吳奇穎, 2001, “Analysis of Condensation Heat Transfer of Dielectric Liquid FC-72”, 國立交通大學機械工程研究所碩士論文.
[18] Yu, W., Choi, S.U.-S., France, D.M., Wambsganss, M.W., 2002, “Single-sided Steam Condensing inside a Rectangular Horizontal Channel”, Int. J. Heat Mass Transfer, Vol 45, pp 3715-3724.
[19] Lu, Q., Suryanarayana, N.V., 1995, “Condensation of a Vapor Flowing inside a Horizontal Rectangular Duct”, ASME J. Heat Transfer, Vol 117, pp418-424.
[20] Akers, W.W., Rosson, H.F., 1960, “Condensation inside a Horizontal Tube”, Chem. Eng. Prog. Symp. Ser., Vol 56, pp 145-149.
[21] Lockhart, R. W., Martinelli, R.C., 1949, “Proposed Correlation of Data for Isothermal Two-phase Two-component Flow in Pipes”, Chem. Eng. Prog., Vol.45, pp.39.
[22] Chisholm, D., 1967, “A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-phase Flow”, Int. J. Heat Mass Transfer, Vol.10, pp.1767-1778.
[23] Friedel, L., 1979, “Improved Friction Pressure Drop Correlation for Horizontal and Vertical Two-phase Pipe Flow”, European Two-Phase Flow Group Meeting, Paper E2, June.
[24] Wambsganss, M. W., 1992, “Frictional Pressure Gradients in Two-phase Flow in a Small Horizontal Rectangular Channel”, Experimental Thermal and Fluid Science, Vol.5, pp.40-56.
[25] Yang C-Y, Webb, R. L., 1996, “Friction Pressure Drop of R-12 in Small Hydraulic Diameter Extruded Aluminum Tubes with and without Micro-fins”, Int. J. Heat Mass Transfer, Vol.39(4), pp.801-809.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林麗娟(民87)。網路圖書館指導之設計原則。教學科技與媒體,38期,30~37。
2. 林雯瑤(民87)。圖書館與WWW網站資源評鑑。教育資料文摘,247期,84-110。
3. 王雅玄(民87)。德懷術(Delphi)在課程評鑑上之應用。教育資料與研究,25期,43-46。
4. 李隆盛(民77)。德爾菲預測術在技職教育上的應用。工業職業教育,7卷,1期,36-40。
5. 李田英(民81)。國小職前教師基本自然科學知識及自然科教學態度之研究。師大學報,37期,529-577。
6. 王曉璿(民86)。網路環境與教學應用。教師之友,39卷1期,7~13。
7. 王裕德(民89)。網際網路在教學上的應用-以線上考試為例。資訊與教育,78期,75-81。
8. 王素梅(民90)。問卷設計。食品工業,33卷,7期,10~16。
9. 張國恩(民88)。資訊融入各科教學之內涵與實施。資訊與教育,72期,2-9。
10. 陳文典(民89)。由國民中小學課程目標看--「自然與生活科技」學習領域之教學與教材。科學教育月刊,231期,40~42。
11. 陳年興(民88)。全球資訊網整合式學習環境。資訊與教育,64期,2-13。
12. 陳鏡潭、李田英、熊召弟、徐玉景、連啟瑞(民79)。國小教師自然科教學需求之評估及研習活動之設計。臺北師院學報,3期,147~178。
13. 楊淑晴(民89)。營建一個建構式取向旳超媒體學習環境。資訊與教育,76期,3-12。
14. 溫嘉榮(民88)。資訊與電腦網路科技對教師的衝擊。資訊與教育,72期,10~14。
15. 熊傑田(民79)。台灣省國小教師自然科基本素養調查研究(ii)。新竹師院學報,4期,169~293。
 
系統版面圖檔 系統版面圖檔