(18.210.12.229) 您好!臺灣時間:2021/03/01 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳文忠
研究生(外文):Wen-Chung Chen
論文名稱:介電液FC-72在兩平板間的池沸騰研究
論文名稱(外文):Study of Pool Boiling of Dielectric Fluid FC-72 Between Two Plates
指導教授:盧定昶
指導教授(外文):Ding-Chong Lu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:69
中文關鍵詞:介電液FC-72池沸騰飽和池沸騰介電液 FC-72 飽和池沸騰兩平板間的池沸騰小間隙
外文關鍵詞:Dielectric FluidFC-72Pool BoilingSaturated Pool BoilingSaturated Pool Boiling of FC-72Pool Boiling between Two PlatesConfined
相關次數:
  • 被引用被引用:1
  • 點閱點閱:88
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以介電液FC-72為工作流體在一大氣壓下進行一大氣壓下,兩平行板間的飽和池沸騰實驗,下方為一片面積1cm×1cm,厚度2mm銅片加熱片,上方為一片不加熱的壓克力板,兩平板之間的間隙S與加熱面與水平的夾角Θ可以改變,即S = 0.5、1.0、1.5及2.0 mm,以及Θ = 0°、45°、90 °,熱通量範圍為0 ~ 210 kW/m2。實驗目的在比較間隙大小、加熱面角度在起始過熱度、核沸騰熱傳與臨界熱通量並與僅一片開放式加熱片時的池沸騰結果比較。實驗結果顯示在這三種角度時,小間隙可以增強小熱通量時的熱傳係數,小熱通量指在Θ = 0°時,熱通量小於20 kW/m2,在Θ = 45°與Θ = 90°時,熱通量小於60 ~ 70 kW/m2。在水平加熱時,四種間隙的臨界熱通量都比開放式的低很多,開放式水平加熱的臨界熱通量約180 kW/m2,四種間隙中最高的臨界熱通量僅55 kW/ m2。當Θ = 45°與Θ = 90°時,間隙0.5 mm及1.0 mm的臨界熱通量並不像水平加熱,間隙0.5 mm及1.0 mm時那麼低,當間隙為1.5 mm及2.0 mm時,一直到臨界熱通之前,熱傳係數都高於開放式,因此可以說小間隙對水平加熱的影響最大,而對加熱面與水平夾角Θ = 45°與Θ = 90°時的影響則需有較小的間隙 ( 本實驗中1.0 mm以下 )。
This experiment is to study the influences of gap sizes on saturated pool boiling under one atmosphere pressure。The so - called two plates is that a heating suface made of a smooth copper plate with 1cm ×1cm in area and 2mm in thicknessis is paralled below an acrylic plate。The space between the two plates S and the angle between the plates and the horizon Θ can be changed,S = 0.5、1.0、1.5 and 2.0 mm,Θ = 0∘、45∘and 90∘,the range of heat flux is 0 ~ 210 kW/m2。Differences of several aspects between the experiment and unconfined ( no acrylic plate ) experiment due to gap sizes and angles are carefully identified,like the onset of boiling、nucleat heat transfer and critical heat transfer。The results show that small gaps can improve heat transfer no matter what the angle is under low heat flux,0 ~ 20 kW/m2 forΘ = 0∘,0 ~ 60 kW/m2 and 70 kW/m2 forΘ = 45∘and 90∘。WhenΘ = 0∘,the critical heat fluxes for four gaps are all severly depressed (the highest,55kW/m2 ) compared to those of the unconfined one ( 180 kW/m2 ),when it comes toΘ = 45∘and 90∘,the depressions are not so severly,especially for S= 1.5 mm and 2.0 mm,the heat transfer coefficients are better than those of the unconfined one till the heat flux reach critical heat flux。So obvious influences of small gaps when the heating plate is horizonally placed are more likely to happen while smaller gaps ( 1.0 mm and less ) are needed for great influence when heating surface is tilted。
第一章 緒論....................................................1
1.1 研究背景...................................................1
1.2 文獻回顧...................................................1
第二章 池沸騰重要參數分析.....................................10
2.1 熱通量q"與過熱度ΔT的關係圖 ( 沸騰曲線 )..................10
2.2 起始過熱度 △Ts...........................................10
2.3 核沸騰區的熱傳係數........................................11
2.4 臨界熱通量................................................12
第三章 實驗設備與方法.........................................20
3.1 工作流體性質..............................................20
3.2 介電液FC-72池沸騰熱傳測試實驗設備.........................20
3.3 實驗方法..................................................23
3.4 不準度分析................................................24
3.5 熱損失實驗................................................24
第四章 實驗結果與討論.........................................32
4.1 當加熱面與水平夾角Θ= 0∘時的實驗結果......................33
4.2 當加熱面與水平夾角Θ= 45∘時的實驗結果.....................34
4.3 當加熱面與水平夾角Θ= 90∘時的實驗結果.....................34
4.4 實驗結果與第1.2.3節所得的歸納作比較.......................35
4.5 實驗結果討論..............................................36
第五章 結論...................................................64
附錄 不準度分析.............................................65
References....................................................67
[1] Nukiyama,S.,1934,"The Maximum and Minimum Value of Heat Transfer from Metal to Boiling Water under Atmosphere Pressure",Int. J. Heat Mass Trans.,V.9,pp. 1419-1433。
[2] Volmer,1945,M. Kinetik der Phasebildung,Steinkopf,Leipzig;Edward Bros.,Ann Arbor。
[3] Bar-Cohen,A.,1992,"State-of-the Art and Trends in the Thermal Packaging of the Electronic Equipment ",J . Electronic Packaging ,v.114 ,pp.257-270。
[4] Oktay,S.,1994,"Beyond Thermal Limits in the Computers Systems",Kluwer Academic Public,Dor drecht。
[5] Katto,Y. and Yokoya,S.,1996,"Experimental Study of Nucleat Pool Boiling in Case of Making Interference-Plate Approach to the Heating Surface",Third International Heat Transfer Conference,pp.219-227。
[6] Katto,Y.,Yokoyo,S. and Teraoka,K.,1977,"Nucleat and Transition Boiling in a Narrow Space between Two Horizontal,Parallel Disk Surfaces,Bull ",JSME20,v.143,pp.638-643。
[7] Katsuta,M. and Nagata,K.,1992,"Boiling Induced Heat Transfer Enhancement Using a Narrow Space", Proc.Eng,Fondation Conf,Pool and External Flow Boiling,pp.381-386。
[8] Bar-Cohen,A. and Schweitzer,H.,1985,"Thermosyphon Boiling in Vertical Channels",J. Heat Trans,v.107,pp.772-778。
[9] Rohsenow,W. M. and Choi,1961,"Heat,Mass and Momentum Transfer",Prentice-Hall,Englewood Cliffs,NJ。
[10] Xia,C.,Guo,Z. and Hu,W.,1992,"Mechanism of Boiling Heat Transfer in Narrow Channels",in Proc,28th Nat Heat Trans. Conf,pp.111-119 。
[11] Bar-Cohen,A. and Rohsenow,W. M.,1984,"Thermally Optimum Spacing of Vertical ,Natural Convection Cooled Plates",J. Heat Trans,v.106,pp.116-123。
[12] Bar-Cohen,A.,Simon,T. W.,1988,"Wall Superheat Excursions in The Boiling Incipience of Dielectric Fluids",J. Heat Transfer Engineering,v.9,No. 3,pp.19-30。
[13] Yao,S. C. and Chang,Y.,1983,"Pool Boiling Heat Transfer in a Confined Space",Int. J. Heat Mass Trans.,v.26,pp. 841-847。
[14] Fujita,Y.,Ohta,H.,Uchida,S. and Nishkawa,K.,1988,"Nucleate Boiling Heat Transfer and Critical Heat Flux in Narrow Space between Rectangular Surfaces",Int. J. Heat Mass Trans.,v.31,pp. 229-238。
[15] Nowell,Jr.,R. M.,Bhavnani,S. H. and Jaeger,R. C.,1995,"Effect of Channel Width on Pool Boiling from a Microconfigured Heat Sink",IEEE Trans. Comp.,Packaging,and Manufact Technol,v.18,No. 3,pp. 534- 539。
[16] Misale,M.,Guglielmini,G.,Frogheri,M. and Bergles,A. E.,1999,"FC-72 Pool Boiling from Finned Surfaces Placed in a Narrow Channel: Preliminary Results", Heat and Mass Transfer,v.34,pp.449-452。
[17] Chang,J. Y. and You,S. M.,1997,"Boiling Heat Transfer Phenomena from Microporous and Porous Surfaces in Saturated FC-72",Int. J. Heat Mass Trans,v.40,No. 18,pp. 4437-4447。
[18] You,S. M.,Bar-Cohen,A. and Simon,T. W.,1990,"Boiling Incipience and Nucleate Boiling Heat Transfer of Highly-Wetted Dielectric Fluids From Electronic Materials",InterSociety Conference on Thermal Phenomena。
[19] Rohsenow,W. M.,1962,"A Method of Correlating Heat Transfer Data for Surface Boiling of Liquid ",Trans. ASME,v.84,pp. 969。
[20] Rini,Daniel P.,Chen,Ruey-Hung and Chow,Louis C.,2001," Bubble Behavior and Heat Transfer Mechanism in FC-72 Pool Boiling ",Experimental Heat Transfer,14:27-44。
[21] Yang,C.,Wu,Y.,Yuan,Xi. and Ma,C.,1999,"Study on Bubble Dynamics for Pool Nucleate Boiling",Int. J. Heat Mass Trans,v.43,pp. 203-208。
[22] Chai,L.H.,Peng,X.F. and Wang,B.X.,1999," Nonlinear Aspects of Boiling Systems and a New Method for Predicting the Pool Nucleate Boiling Heat Transfer ",Int. J. Heat Mass Trans,v.43,pp. 75-84。
[23] Haider,S.Imam and Webb,Ralph L.,1997," A Transient Micro-Convection Model of Nucleate Pool Boiling ",Int. J. Heat Mass Trans,v.40,pp.3657-3688。
[24] Benjamin,R. J. and Balakrishnan,A. R.,1997," Nucleation Site Density in Pool Boiling of Saturated Pure Liquids:Effect of Surface Microroughness and Surface and Liquid Physical Properties ",Int. J. Heat Mass Trans,v.15,pp. 32-42。
[25] Benjamin,R. J. and Balakrishnan,A. R.,1996," Nucleate Pool Boiling Heat Transfer of Pure Liquids at Low to Moderate Heat Fluxes ",Int. J. Heat Mass Trans,v.39,pp. 2495-2504。
[26] Bonjour,Jocelyn,Clausse,Marc and Lallemand,Monique,2000,"Experimental Study of The Coalescence Phenomenon during Nucleate Pool Boiling ",Experimental Thermal and Fluid Science,v.20,pp. 180-187。
[27] Gjerkes,Henrik and Iztok,Globic,2002," Measurement of Certain Parameters Influencing Activity of Nucleation Sites in Pool Boiling ",Experimental Thermal and Fluid Science,v.25,pp. 487-493。
[28] Monde,M.,Inoue,T. and Mitsutake,Y.,1997,"Critical Heat Flux in Pool Boiling on a Vertical Heater",Heat and Mass Transfer,v.32,pp.435-440。
[29] Gu,J. M. and Lu,M.,1999,"The New Assumption for Calculating Heat Transfer in Pool Boiling",Heat and Mass Transfer,v.35,pp. 295-297。
[30] Forster,H. K. and Zuber,N.," Dynamics of Vapor Bubbles and Boiling Heat Transfer ",AIChEJ,v.1,pp. 531,1955。
[31] Kline,S. J.,1985,"The Purpose of Uncertainty Analysis",J. Fluids Engineering,v.107,pp. 153-160。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李錫津(民89)。學校的課程管理。教師天地,108,4-7。
2. 李隆盛(民89)。國教階段一貫科技與生涯發展課程綱要的研訂。教育研究資訊,7(4),19-27。
3. 李田英(民89)。由設計科學課程的理論談本次課程改革的一些問題。科學教育月刊,231,28-34。
4. 王美芬(民89)。國小教師面對九年一貫「自然與生活科技」領域新課程因應策略。國教新知,46(3),31-36。
5. 方慧琴(民)。從「九年一貫課程綱要」談─學校課程發展的問題與因應政策。國教新知,46(1),35-42。
6. 邱美虹(民89)。國民教育階段九年一貫課程綱要「自然與科技」領域中「自然科學」課程綱要之評介。科學教育月刊,231,20-27。
7. 柯啟瑤(民83)。自然科新課程的基本精神。研習資訊,11(5),26-31。
8. 張清濱(民84)。課程發展與課程改革。研習資訊,12(2),1-9。
9. 梁恆正(民68)。認知心理學在課程設計上的應用,教育文粹,8。
10. 陳文典(民89)。由國民中小學課程目標看-「自然與生活科技」學習領域之教學與教材。科學教育月刊,231,40-42。
11. 陳伯璋(民82)。社會變遷課程發展與潛在課程。教育資料文摘,32(5),110-128
12. 游家政(民88)。九年一貫課程綱要總綱的理念與架構。教師天地,102,34-41
13. 黃炳煌(民84)。談課程發展的一些基本概念。教改通訊,11,41-43
14. 黃萬居(民88)。九年一貫的自然與科技課程初探。科學教育研究與發展季刊,14,3-6。
15. 楊龍立(民76)。我國科學教育思想的演進。新竹師院學報,184-195。
 
系統版面圖檔 系統版面圖檔