跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾孝平
研究生(外文):Shiauh-Pirng Jung
論文名稱:在高壓區域內螺旋凹槽式真空邦浦之流場計算
論文名稱(外文):Flow calculation in the spiral grooves of a vacuum pump in the high pressure regime
指導教授:崔燕勇
指導教授(外文):Yeng-Yung Tsui
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:74
中文關鍵詞:動態網格非結構性網格入口壓力邊界條件螺旋凹槽式真空邦浦線性κ—ε模式
外文關鍵詞:dynamic meshesunstructured meshesinlet pressure boundaryspiral grooved vacuum pumpslinear κ—ε mode
相關次數:
  • 被引用被引用:1
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本文是以計算流體力學的方法在ALE(arbitrary Lagrangian-Eulerian)座標系統下分析螺旋凹槽式真空邦浦內動態網格產生的流場。計算時使用非結構性和非交錯式網格;對於速度與壓力的偶合則採取SIMPLE法則並以有限體積法將統御方程式離散化。而為了消除非交錯網格產生的棋盤式震盪(checkerboard)則使用了Rhie & Chow的方法修正面上質量流率。而由於模擬此流場時是固定進出口壓力以獲得邦浦之流量,所以需對入口的壓力邊界條件作特別的處理。
本文針對T. Sawada【9】的螺旋凹槽式真空邦浦進行分析,主要是探討在層流狀態下此一幫浦的性能。在研究中測試了不同的設計參數對於抽氣效能的影響。結果顯示流道角度與流道高度的改變對流量會有正面及負面的效應,因此在角度與高度間均存在一最佳化的值。間隙的存在會有餘隙洩漏的效應,所以當間隙愈大時邦浦的性能將愈差。當流道數目愈少時其受間隙的洩漏影響減小,所以流量隨著流道數目減少而增加。當轉速加大時能使得壁面傳遞更多的動量至流體因此產生了較大流量。
另外本文以線性κ—ε模式配合壁函數來分析此邦浦的紊流流場,而由於使用了高雷諾數的紊流模式因此與實驗的結果有所差異。為了克服此一問題可能須採取適用於低雷諾數的紊流模式,然而這也增加了數值模擬的複雜度,所以此類問題仍有待解決。
In this thesis, CFD is used to analyze viscous flow of dynamic meshes in spiral grooved vacuum pumps with ALE method. Unstructured and nonstaggered meshes are adopted in computations. The SIMPLE algorithm is taken to couple velocity-pressure relations and the governing equations are discretized by finite volume method. For avoiding checkerboard from nonstaggered meshes, we correct mass flow with a Rhie & Chow method. Besides, a throughput of the pump is obtained by fixing the inlet and outlet pressure, and a special treatment of velocity-pressure couple is necessary for the pressure boundary in the inlet.
In this thesis, a spiral grooved vacuum pump [9] is analyzed and we explore the pumping performance in the laminar flow mainly. Different design parameters are tested how to influence the pump throughput. Testing on spiral angle and channel height indicates that these parameters need to be optimized to achieve better performance. The appearance of clearance leads the gap leakage and the pumping performance is becoming worse with increase of the clearance. When number of channel is fewer, influence of the gap leakage is lowered and the throughput increases with reduction of number of channel. Results also reveal that increase of rotating speed transfers more momentum into fluid and the larger throughput is obtained.
As regards turbulent flow computations, the linear κ—ε model and wall-functon are incorporated to solve. The difference of computation and experiment is possibly due to the use of high Reynolds turbulent model. To overcome this problem, a low Reynolds one is adopted to solve but the complexity of numerical model is also increased. This problem is still needed to solve.
目 錄
中文摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
符號說明
1 緒論
1.1 前言
1.2 文獻回顧
1.3 研究目的及範圍
2 數學模式
2.1 前言
2.2 基本假設
2.3 動態網格與統御方程式
2.4 邊界條件
3 數值方法
3.1 簡介
3.2 傳輸方程式離散化
3.3 壓力與速度之偶合關係式
3.4 邊界條件
3.5 格點建立
3.6 解題過程
4 結果與討論
4.1 簡介
4.2 計算與實驗之比較
4.3 邦浦的幾何外型、工作原理與格點的測試
4.4 基本案例測試
4.5 各設計參數的測試
4.6 紊流流場模擬
5 結論
參考文獻
附錄
表格
圖示
1.G. Levi, “Vacuum Performance of Molecular Drag Stages”, Vacuum, vol. 43, pp 541-543, 1992.
2.A. Conrad and O. Ganschow , “ Comparison of Holweck- and Gaede-pumping stages ” , Vacuum , Vol.44 , pp.681-684 , 1993.
3.J. G. Chu , “ Anew hybrid molecular pump with large throughput ” , J. Vac. Sci. Technol. , A , 6(3) , pp. 1202-1205 , 1988.
4.G. Levi, “Combination of Turbomolecular Pumping Stages and Molecular Drag Stages”, J. Vac. Sci. Technol. A, 10(4), pp. 2619-2622, 1991.
5.K. Nanbu and S. Igarashi , “THREE-DIMENSIONAL LOW-DENSITY FLOWS IN THE SPIRAL GROOVES OF A TURBO-MOLECULAR PUMP ” , Vacuum , Vol. 21 , pp. 221-228, 1992.
6.Tsui, Y.-Y. Kung, C.-P. Cheng, H.-P. , “Modeling of the slip flow in the spiral grooves of a molecular pump”, JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A VACUUMS SURFACES AND FILMS 2001 VOL 19; PART 6 , page(s) 2785-2790.
7.Tsui, Y.-Y. Kung, C.-P. Cheng, H.-P. , “Analysis of the Flow in the Grooves of a Molecular Pump”, NUMERICAL HEAT TRANSFER PART A APPLICATIONS 2001 VOL 40; PART 1 , page(s) 73-88.
8.Tsui, Y.-Y. Su, Y.-S. Cheng, H.-P. , “Flow Characteristics of the Molecular Pump of Holweck Type in the Slip Regime”, TRANSACTIONS- AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF FLUIDS ENGINEERING 2002 VOL 124; PART 1 , page(s) 287-290.
9.T. Sawada, M. Nakamura, A. Abumiya, “Spiral grooved vacuum pump working in high pressure ranges”, Vacuum 43(11), 1097-1099 (1992).
10.T. Sawada, “Improvement in the performance of spiral grooved viso-vacuum pumps in the coarse vacuum region”, Vacuum 44(5-7), 689-692 (1993).
11.I. Akutsu and T. Ohmi , “Innovation of the fore pump and roughing pump for high-gas-flow semiconductor processing”, J. Vac. Sci. Technol. A 17(6), 3505-3508, 1999.
12.T. Ohbayashi, T. Sawada, M. Hamaguchi, and H. Miyamura, “Study on the performance prediction of screw vacuum pump”, Applied Surface Science 169-170 (2001) 768-771.
13.呂登復 , “ 實用真空技術 ” , 黎明書店 , 1996.
14.Chen, C.-J. Jaw, S.-Y. , “Fundamentals of Turbulence Modeling”, Taylor & Francis, Washington, 1995.
15.D. B. Spalding and B. E. Launder, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, 3:269-289, 1974.
16.H. K. Versteeg and W. Malalasekera, “An introduction to computational fluid dynamics-The finite volume method”, Longman, London, 1995.
17.H. Jasak, “Error analysis and estimation for the finite volume method with applications to fluid flows”, Degree of Doctor of Philosophy of the University of London and Diploma of Imperial College, 1996.
18.S.V. Patankar, “Numerical Heat Transfer and Fluid Flow ”, McGraw-Hill, New York, 1980.
19.C. M. Rhie and W. L. Chow, “ Numerical study of the turbulent flow past an airfoil with trailing edge separation”, AIAA Journal, Vol.21, No.11, pp.1525-1532, 1983.
20.J. H. Ferziger and M. Peric, “Computational Methods for Fluid Dynamics ”, Springer-Verlag, Berlin, 1997.
21.K. M. Kelkar and D. Choudhury, “Numerical method for the prediction of incompressible flow and heat transfer in domains with specified pressure boundary conditions”, Numerical Heat Transfer , Part B, 38, pp.15-36, 2000.
22.J.A. Meijerink and H.A. Van der Vorst , “An Iterative Solution Method for Linear Systems of which the Coefficient Matrix is a Symmertic M-Matrix ”, Math. Comput., 31(137), pp.148-162, 1977.
23.R. Fletcher, “Conjugate gradient methods for indefinite system”, Lecture Notes in Mathematics, 506, pp.773-789, 1976.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top