跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/23 19:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋敬正
論文名稱:利用波茲曼方程式模擬近似不可壓縮流流經雙方柱體流場分析之研究
論文名稱(外文):Simulation of nearly incompressible flow past two square cylinder using lattice boltzmann method
指導教授:吳宗信吳宗信引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:波茲曼方程式平行化方形柱體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用平行化晶格波茲曼方法分析近似不可壓縮流流經二維管流內雙方柱體之流場現象。文中探討不同之柱體間格距離(separation distance)、雷諾數(Reynolds number)、及阻礙物高度與流管高度比(blockage ratio)對流場產生之影響,著重於Strouhal number(St)的變化。在此,觀察到柱體間格距離、雷諾數與不同之blockage ratio在柱體以平行流場之直線排列方式(tandem)中所扮演之角色。同時,文中有詳細針對Strouhal number(St)在各流場間之變化。然而,在柱體與流場方向重直之橫置式擺置中(side-by-side),我們可以發現間格長度對於流場變化的影響。綜觀而言,本文中所使用之數值方法可以模擬管流內各流場的現象,而且呈現良好的結果。

中文摘要 I
ABSTRACT II
TABLE OF CONTENTS III
LIST OF TABLES V
LIST OF FIGURES VI
Chapter 1 INTRODUCTION 1
1.1 OVERVIEW 1
1.2 LITERATURE SURVEY 2
1.2.1 Correlative Investigations 2
1.2.2 A Short History of Lattice-Boltzmann Method 4
1.3 OBJECTIVES AND ORGANIZATION OF THE THESIS 8
Chapter 2 NUMERCIAL METHOD 9
2.1 LATTICE-BOLTZMANN METHOD 9
2.1.1 Lattice-Boltzmann Equation 9
2.1.2 2D Nine-Velocity LBE Model(D2Q9) 10
2.2 INITIAL AND BOUNDARY CONDITIONS 11
2.2.1 Initial Conditions 11
2.2.2 Wall Boundary Conditions 12
2.2.3 Inlet and Outlet Boundary Conditions 13
2.3 PARALLELIZATION 13
2.3.1 Computer Resource 13
2.3.2 Domain Decomposition Methods 13
2.3.3 Programming Style 14
Chapter 3 RESULT AND DISCUSSION 15
3.1 BENCHMARK TEST 15
3.1.1 Benchmark Problems 15
3.1.2 Result of Sequential Code 15
3.2 A CHANNEL WITH A BUILT-IN TANDEM OF SQUARE CYLINDERS 17
3.3 SQUARE CYLINDERS ARRANGED SIDE BY SIDE IN A CHANNEL 19
Chapter 4 CONCLUSION 21
Chapter 5 FUTURE WORK 22
REFERENCE 23

[1] A. Okajima, Strouhal numbers of rectangular cylinders, Journal of Fluid Mechanics Vol. 123 (1982), pp.379-398.
[2] R. W. Davis and E. F. Moore, A numerical study of vortex shedding from rectangles, Journal of Fluid Mechanics Vol. 116 (1982), pp.475-506.
[3] R. W. Davis, E. F. Moore and L. P. Purtell, Numerical experimental study of confined flow around rectangles, Physics of Fluids Vol. 27 (1984), pp.46-59.
[4] M. M. Zdravkovich, Review of flow interference between two circular cylinders in various arrangements, Transactions of the ASME. Journal of Fluids Engineering Vol. 99 (1977), pp.618-633.
[5] J. R. Meneghini, F. Saltara, C. R. Siqueira, and J. A. Ferrari Jr., “Numerical simulation of flow interference between two circular cylinders in tandem and side by side arrangements”, Journal of Fluid and Structures Vol. 15 (2001), pp. 327-350.
[6] A. Valencia, Numerical study of self-sustained oscillatory flows and heat transfer in channels with a tandem of transverse vortex generators, Heat and Mass transfer Vol. 33 (1998), pp.465-470.
[7] A. Valencia, Unsteady flow and heat transfer in a channel with a built-in tandem of rectangular cylinders, Numerical Heat Transfer, Part A, Vol. 29 (1996), pp.613-623.
[8] A. Valencia, J. S. Martin, R. Gormaz, Numerical study of the unsteady flow and heat transfer in channels with periodically mounted square bars, Heat and Mass transfer Vol. 37 (2001), pp.265-270.
[9] X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Physical Review E Vol. 47, No. 3 (1993), pp.1815-1819.
[10] X. Shan and H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Physical Review E Vol. 49, NO. 4 (1994), pp.2941-2948.
[11] M. R. Swift, W. R. Osborn, and J. M. Yeoman, Lattice Boltzmann Simulation of Nonideal Fluids, Physical Review Letters Vol. 75, No. 5(1995), pp.830-833.
[12] A. J. C. Ladd, Numerical simulations of particulate suspensions via a discetized Boltzmann equation. Part 1. Theoretical foundation, Journal of Fluid Mechanics Vol. 271 (1994), pp.285-310.
[13] A. J. C. Ladd, Numerical simulations of particulate suspensions via a discetized Boltzmann equation. Part 2. Numerical results, Journal of Fluid Mechanics Vol. 271 (1994), pp.311-340.
[14] R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: theory and applications, Physical Report Vol. 222 (1992), pp.145-197.
[15] S. Chen, S. P. Dawson, G. D. Doolen, D. R. Janecky, A. Lawniczak, Lattice methods and their applications to reacting systems, Computers and Chemical Engineering Vol. 19 (1995), pp.617-646.
[16] S. P. Dawson, S. Chen, and G. D. Doolen, Lattice Boltzmann computations for reaction-diffusion equations, Journal of Chemical Physics Vol. 98 No. 2 (1993), pp.1514-1523.
[17] J. Hardy, Y. Pomeau and O. de Pazzis, Time evolution of two-dimensional model system. I. Invariant states and time correlation functions, Journal of Mathematical Physics Vol. 14 (1973), pp.1746-1759.
[18] U. Frisch, B. Hasslacher and Y. Pomeau, Lattice-gas automata for the Navier-Stokes equation, Physical Review Letters Vol. 56, No. 14 (1986), pp.1505-1508.
[19] G. R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice gas automata, Physical Review Letters Vol. 61 No. 20 (1988), pp.2332-2335.
[20] J. M. V. A. Koelman, A simple lattice boltzmann scheme for navier-stokes fluid flow, Europhysics Letters Vol. 15 (1991), pp.603-607.
[21] S. Chen, H. Chen, D. Martinex, and W. Matthaeus, Lattice Boltzmann model for simulation of magnetohydrodynamics, Physical Review Letter Vol. 67, No. 27 (1991), pp.3776-3779.
[22] Y. H. Qian, D. d’Humieres, and P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhysics Letters Vol. 17 (1992), pp.470-484.
[23] M. Henon, Isometric Collision Rules for the Four-Dimensional FCHC Lattice Gases, Complex Syst. 1 (1987), pp.475-494.
[24] H. Chen, H-theorem and generalized semi-detailed balance condition for lattice gas systems, Journal of statistical physics Vol. 81 (1995), pp.347-359.
[25] Dieter A. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann models : an introduction, Springer, 2000.
[26] S. Hou, Q. Zou, S. Chen, G. Doolen, and A. C. Cogley, Simulation of cavity flow by the lattice Boltzmann method, Journal of Computational Physics Vol. 118 No. 2(1995), pp.329-347.
[27] Pavol Pavlo, George Vahala, Linda Vahala, Min Soe, Linear Stability Analysis of Thermo-Lattice Boltzmann Models, Journal of Computational Physics Vol. 139 No.1 (1998), pp.79-91.
[28] S. Chen, Q. Zou, S. Hou, and G. D. Doolen, An improved incompressible lattice boltzmann model for time-independent flows, Journal of statistical physics Vol. 81, (1995), pp.35-48.
[29] Q. Zou, S. Hou, and G. D. Doolen, Analytical solutions of the lattice boltzmann bgk model, Journal of statistical physics Vol. 81, (1995), pp.319-334.
[30] Z. Lin, H. Fang, and R. Tao, Improved lattice Boltzmann model for incompressible two-dimensional steady flows, Physical Review E Vol. 54, No. 6 (1996), pp.6323-6330.
[31] S. Chen, D. Martinez, and R. Mei, On the boundary conditions in lattice Boltzmann methods, Physics of fluids Vol. 8 No. 9 (1996), pp.2527-2536.
[32] X. He, L. S. Luo, and M. Dembo, Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids, Journal of Computational Physics 129 (1996), pp.357-363.
[33] N. Cao, S. Chen, S. Jin, and D. Martý´nez, Physical symmetry and lattice symmetry in the lattice Boltzmann method, Physical Review E Vol. 55, NO. 1 (1997), pp.21-24.
[34] G. Peng, H. Xi, and S.-H. Chou, On boundary conditions in the finite volume lattice Boltzmann method on unstructured meshes, International Journal of Modern Physics C, Vol. 10, No. 6 (1999), pp.1003-1016.
[35] X. He and L. Luo, A priori derivation of the lattice Boltzmann equation, Physical Review E Vol. 55, NO. 6 (1997), pp.6333-6336.
[36] X. He and L.-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Physical Review E Vol. 56, NO. 6 (1997), pp.6811-6817.
[37] H. Chen, S. Chen, and W. H. Mattaeus, Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Physical Review A Vol.45 No. 8 (1991), pp.5339-5342.
[38] U. Frisch, D. d’Humie`res, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet, Lattice gas hydrodynamics in two and three dimensions, Complex Syst. 1 (1987), pp.649-707.
[39] D. O. Martý´nez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics, Physics of Fluids Vol. 6, No. 3 (1994), pp.1285-1298.
[40] P. A. Skordos, Initial and boundary conditions for the lattice Boltzmann method, Physical Review E Vol. 48, No. 6 (1993), pp. 4823-4842.
[41] J. Bernsdorf, Th. Zeiser, G. Brenner, and F. Durst, Simulation of a 2D channel flow around a square obstacle with lattice-Boltzmann (BGK) automata, International Journal of Modern Physics C Vol. 9, No. 8 (1998), pp.1129-1141.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文