跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/23 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳富源
研究生(外文):FU-YUAN WU
論文名稱:利用非結構調適網格於三維直接蒙地卡羅法及其應用
論文名稱(外文):The Three-Dimensional Direct Simulation Monte Carlo Method Using Unstructured Adaptive Mesh and It Applications
指導教授:吳宗信吳宗信引用關係
指導教授(外文):Jong-Shinn Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
中文關鍵詞:網格切割調適網格網格
外文關鍵詞:ADAPTIVE MESHMESH ADAPTATIONMESH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究完成非結構調適網格(h-refinement)於三維直接模擬蒙地卡羅法(Direct Simulation Monte Carlo Method)之應用。當網格內的Kn 小於標準值時,使用isotropic調適法建立新的網格。然而,這個簡易的方法會有多個重要的因素影響了蒙地卡羅法(DSMC)的表現。因此,我們應用了anisotropic調適法,移除懸掛點(hanging node)。它解決調適網格所會遇到懸掛點(hanging node)的所有困難。同時,這個方法所增加的工作量是可以忽略不計的。我們已然使用以氦氣,不同的網格:四面體的,六面體的,五面體的,或是三者混合的網格,測試高速度cavity流場,和超音流流經一圓球障礙物。結果證明,利用調適網格得到較好的改善。利用調適網格計算上的代價遠小於蒙地卡羅法(DSMC)本身。因此,我們得到一個結論,利用調適網格法較原始的非調適網格法有較正確的結果。

The implementation of an adaptive mesh embedding (h-refinement) schemes using unstructured grid in three-dimensional Direct Simulation Monte Carlo (DSMC) method is reported. In this technique, local isotropic refinement is used to introduce new meshes where local cell Knudsen number is less than some preset value. This simple scheme, however, has several severe consequences affecting the performance of the three-dimensional DSMC method. Thus, we have applied a technique to remove the hanging node, by introducing the anisotropic refinement. This is completed by simply connect the hanging node(s) with the other non-hanging node(s) in the non-refined, interfacial cells. In contrast, this remedy increases negligible amount of work; however, it removes all the difficulties presented in the scheme with hanging nodes. We have tested the proposed scheme for Argon gas using different types of mesh, such as tetrahedron, hexahedron, and pyramid or mixed, to a high-speed driven cavity flow and, then, a hypersonic flow over a sphere. The results show an improved flow resolution as compared with that of unadaptive mesh.

中文摘要 I
ABSTRACT II
LIST OF TABLES IV
LIST OF FIGURES V
NOMENCLATURE VII
CHAPTER 1 INTRODUCTION 1
1.1 Rarefied Gas Dynamics 1
1.2 Solution Methodologies 1
1.3 Structured and Unstructured Mesh 3
1.4 Mesh Adaptation 3
1.5 Concerns Related to Mesh Adaptation 6
1.6 Objectives of the Thesis 9
1.7 Organization of the Thesis 9
CHAPTER 2 THE DSMC METHOD WITHMESH ADAPTATION 10
2.1 The Conventional DSMC Method 10
2.2 The DSMC Method with Mesh Adaptation 11
2.2.1 General Features 11
2.2.2 Adaptation Parameters and Criteria 12
2.2.3 Adaptation Procedures 13
2.2.4 Surface Representation 19
CHAPTER 3 BENCHMARK TESTS 21
3.1 A High-Speed Driven Cavity Flow 21
3.2 A Hypersonic Flow Over a sphere 23
CHAPTER 4 CONCLUSIONS AND FUTURE WORK 26
4.1 Conclusions 26
4.2 FUTURE WORK 26
REFERENCES 28

1. Alejandro L. Garcia, and John B. Bell, “Adaptive Mesh and Algorithm Refinement using Direct Simulation Monte Carlo”, J. Computational Physics, 1999; 154:134-155.
2. Alexander, F. J., Garcia, A. L. and Alder, B. J., “Direct Simulation Monte Carlo for Thin-film Bearings”. Phys. Fluids A 1994; 6:3854-3860.
3. Baker, T., “Unstructured meshes and surface fidelity for complex shapes”, In AIAA 10th Computational Fluid Dynamics Conference, 1991.
4. Bird, G. A., Molecular Gas Dynamics (Clarendon Press, Oxford, 1976)
5. Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, New York, 1994).
6. Bohdan Z. Cybyk, “Combining the Monotonic Lagrangian Grid with a Direct Simulation Monte Carlo Model”, J. Computational Phys., 1995; 122:323-334.
7. Boyd, I. D. and Chen, G., “Predicting failure of the continuum fluid equations in transitional hypersonic flows”, Phys. Fluids, January 1995; 7: No.1,210-219.
8. Boyd, I.D., Jafry, Y. and Beukel, J.W., “Particle simulation of helium microthruster flows,” J. Spacecraft Rockets 1994; 31:271-281.
9. Butefsch, K., "Investigation of Hypersonic Non-equilibrium Rarefied Gas Flow Around a Circular Cylinder by the Electron Beam Technique," Rarefied Gas Dynamics II, Academic Press, New York, 1969; 1739-1748.
10. Carlson, A.B. and Wilmoth, R.G., "Shock Interference Prediction Using Direct Simulation Monte Carlo, " J. of Spacecrafgt and Rockets, 1992; 29:780-785.
11. Chun, C.H., "Experiments on Separation at a Compression Corner in Rarefied Hypersonic Flow," 17th International Symposium on Rarefied Gas Dynamics (Beylich Ed.),1990; 562-569.
12. Connell, S.D. and Holms, D.G., “Three-Dimensional Unstructured Adaptive Multigrid Scheme for the Euler Equations,” AIAA Journal, 1994; 32:1626-1632.
13. Edney, B., "Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock," Technical Report FFA 115, FFA, The Aeronautical Institute of Sweden, 1968.
14. Harvey, J.K., " Direct Simulation Monte Carlo Method and Comparisons with Experiment," Progress in AStronautics and Aeronautics, 1986; 103:25-42.
15. Ivanov, M.S., Markelov, G.N. and Gimelshein, S.F., "Study of Shock Wave Reflection and Hysteresis Phenomena in Steady Flows by the DSMC Method," 20th International Symposium on Rarefied Gas Dynamics (Shen C. Ed.), 1996; 131-136.
16. J.-S. Wu, K.-C. Tseng and C.-H. Kuo, "The Direct Simulation Monte Carlo Method Using Unstructured Adaptive Mesh and Its Application," International Journal for Numerical Methods in Fluids, Vol 38, Issue 4,pp.351-375,2002..
17. Kallinderis, Y. and Vijayan, P., “Adaptive Refinement-Coarsening Scheme for Three-Dimensional Unstructured Meshes,” AIAA Journal, 1993; 31:1440-1447.
18. Kannenberg, K. C., “Computational method for the Direct Simulation Monte Carlo technique with application to plume impingement”. Ph.D. Thesis, Cornell University, Ithaca, NY 1998.
19. Koura, K. and Takahira, M., “Monte Carlo Simulation of Hypersonic Rarefied Nitrogen Flow Around a Circular Cylinder,” 20th International Symposium on Rarefied Gas Dynamics, 1996; 1236-1242.
20. Lee, Y. K. and Lee, J. W., “Direct simulation of compression characteristics for a simple drag pump model,” Vacuum 1996; 47:807-809
21. Lee, Y. K. and Lee, J. W., “Direct simulation of pumping characteristics for a model diffusion pump,” Vacuum 1996; 47:297-306.
22. Lohern, R. and Parikh, P., “Generation of Three-dimensional Unstructured Grids by Advancing Front Method”, AIAA paper 0515, 1988.
23. Merkle, C. L., “New Possibilities and Applications of Monte Carlo Methods,“ Rarefied Gas Dynamics (ed. Belotserkovsk II), 13th International Symposium on Rarefied Gas Dynamics, 1985; 333-348.
24. Moss, J.N., Price, J.M. and Chun, C.H., "Hypersonic Rarefied Flow About a Compression Corner: DSMC Simulation and Experiment," 26th AIAA Thermophysics Conference, AIAA Paper 1991; 91-1313.
25. Moss, J.N., Rault, D.F. and Price, J.M., "Direct Monte Carlo Simulations of Hypersonic Viscous Interactions Including Separations," Rarefied Gas Dynamics: Space Science and Engineering. Progress in Astronautics and Aeronautics Vol. 160 AIAA. (Shizgal and Weave Ed.), 1994.
26. Nance, R. P., Hash, D. B. and Hassan, H. A., “Role of boundary conditions in monte carlo simulation of microelectromechanical systems”, Journal of Thermophysics and Heat Transfer 1998; 12, Technical Notes:447-449.
27. Olynick, D. P., Moss, J. N. and Hassan, H. A., “Grid Generation and Application for the Direct Simulation Monte Carlo Method to the Full Shuttle Geometry,” AIAA Paper 90-1692.
28. Piekos, E. S. and Breuer, K. S., “Numerical modeling of micromechanical devices using the direct simulation monte carlo method”, Trans. ASME J. Fluids Eng. 1996; 118:464-469.
29. Powell, K.G., Roe, P.L. and Quirk, J., “Adaptive mesh algorithms for computational fluid dynamics”, Algorithmic Trends in Computational Fluid Dynamics, Springer Verlag Co, New York, 1992; 303-337.
30. Rausch, R.D., Batina, J.T. and Yang, H.T.Y., "Spatial Adaption Procedures on Unstrutuctured Meshes for Accurate Unsteady Aerodynamics Flow Computation," AIAA Paper No. 91-1106-CP, 1991.
31. Robinson, C.D., “Particle Simulations on Parallel Computers with Dynamic Load Balancing”, PHD Thesis, Imperial College of Science, Technology and Medicine, UK, 1998.
32. Schaff, S. and Chambre, P., Fundamentals of Gas Dynamics (Princeton University Press, Princeton, NJ, 1958), Chapter H.
33. Shang, H. M., Shih, M. H., Wei, H., and Chen, Y. S., “Fluid Flow Computation Using Unstructured Adaptive Finite Volume Method”, 7th International Symposium on Computational Fluid Dynamics, 1996; 15-19.
34. Shimada, T. and Abe, T., “Applicability of the Direct Simulation Monte Carlo Method in a Body-fitted Coordinate System,” Rarefied Gas Dynamics, Ed. Muntz et al., Progress in Astronautics and Aeronautics, AIAA 1989; 258-270.
35. Wang, L. and Harvey, J. K., “The Application of Adaptive Unstructured Grid Technique to the Computation of Rarefied Hypersonic Flows Using the DSMC Method,” Rarefied Gas Dynamics (ed. J. Harvey and G. Lord), 19th International Symposium, 1994; 843-849.
36. Wu, J. S. and Lee, W. S., “Conductance Computation of a Short Tube Using the Direct Simulation Monte Carlo Method,” (submitted for publication).
37. Wu, J. S. and Tseng, K. C., “Analysis of Micro-scale Gas Flows With Pressure Boundaries Using Direct Simulation Monte Carlo Method,” Computer & Fluids, Vol. 30, pp. 711-725, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top