跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/18 00:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:駱世杰
研究生(外文):Shr-Jie Luo
論文名稱:含香豆素碟狀分子之合成及其在液晶光配向膜上之應用
論文名稱(外文):Synthesis of Discotic Compounds Containing Coumarin Side Groups for the Applications of Liquid Crystal Photo-Alignment Layers
指導教授:許千樹
指導教授(外文):Chain-Shu Hsu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:65
中文關鍵詞:香豆素碟狀分子光配向膜
外文關鍵詞:coumarindiscotic compoundphoto-alignment layer
相關次數:
  • 被引用被引用:4
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要目的是合成含有香豆素感光基團於側鏈的碟狀分子(1M),並探討其在液晶光配向膜上的應用性。為了探討不同的感光基團對液晶配向性質、感光性和熱穩定性的影響,本研究並比較三種側鏈分別含有香豆素、丙烯酸酯和環氧基不同感光基團的碟狀分子。三種單體以旋轉塗佈法製成膜,經由線性偏極化紫外光 (LPUV) 照射後,都可以產生排列液晶的能力。
單體1M在照光聚合過程當中,利用紫外可見光光譜分析,證實其只進行 (2 + 2) 環化加成反應。經由低能量LPUV照射下,誘導液晶分子排列的方向是平行於LPUV偏極化的方向,而且在相同曝光強度下,單體1M僅需要2.4 J/cm2的曝光能量就可以達到均勻排列液晶分子的效果,遠比需要較多曝光能量的感光基團丙烯酸酯或環氧基來的省時。利用單體1M配向之液晶盒具有相當高的熱穩定性,其經由160℃高溫下測試不會有所改變。此外,利用一次傾斜曝光能夠在1M光配向膜上產生小預傾角。由於單體1M具有感光性高、溶解性好且不需要摩擦定向的優點,將有潛力應用在製備薄膜電晶體驅動的多區域液晶顯示器上。
The goal of this study is to synthesize a discotic compound (1M) containing coumarin side group for the application of liquid crystal photo-alignment materials. The monomer 1M was also compared with two discotic monomers which containing acrylate and epoxy side groups based on their alignment capability, photosensitivity and device thermal stability. Three monomers were spin coated on the ITO glass substrates and irradiated with linearly polarized UV (LPUV) light. All three monomers showed the photo-alignment capability.
The UV-visible spectra verified that monomer 1M underwent 2 + 2 photodimerization during the UV exposure. The LC alignment direction is parallel to the polarization axis of LPUV. The alignment was achieved when the LPUV exposure energy was higher than 2.4 J/cm2. The required exposure energy of monomer 1M was much lower than that of monomers 2M and 3M. It can save processing time in LCD manufacture. The uniform alignment was remained even when the temperature was raised to 160℃. A small pretilt angle was generated when the monomer 1M film was irradiated with single oblique exposure of LPUV light. The monomer 1M with high photosensitivity, good solubility in common organic solvent, has potential application for the multi-domains TFT-LCD devices.
目錄
中文摘要……………………………………………………………………i
英文摘要…………………………………………………………………ii
謝誌……………………………………………………………………iv
目錄………………………………………………………………………v
Scheme目錄……………………………………………………………viii
Figure目錄…………………………………………………………ix
Table目錄…………………………………………………xii
第一章 緒論……………………………………………………………1
1.1簡介……………………………………………………………1
1.2配向膜簡介……………………………………………………2
1.2.1配向膜的種類……………………………………………….4
1.3液晶顯示器之視角問題…………………………………………8
1.3.1 視角形成的原因…………………………………………8
1.3.2 廣視角技術………………………………………………9
1.3.3 多區域配向技術之原理…………………………………10
1.3.4 多區域之配向方法………………………………………11
1.4 光配向材料簡介………………………………………………12
1.4.1 光配向材料之種類………………………………………12
1.4.2 光配向之曝光方法………………………………………16
1.5 碟狀液晶簡介…………………………………………………17
1.5.1 碟狀液晶相的分類………………………………………17
1.5.2 碟狀液晶分子的結構…………………………………19
1.6 研究動機………………………………………………………20
第二章實驗部份………………………………………………………22
2.1 試藥……………………………………………………………22
2.2 測試儀器………………………………………………………22
2.3 合成部份………………………………………………………24
2.3.1 單體1M之合成…………………………………………24
2.3.2 單體2M 之合成………………………………………26
2.3.2 單體3M 之合成………………………………………26
2.4液晶盒之製作流程………………………………………………30
2.4.1 玻璃的清洗步驟…………………………………………30
2.4.2 光配向材料………………………………………………30
2.4.3 配向膜之製備……………………………………………31
2.4.4 液晶盒之製作……………………………………………33
第三章單體鑑定及性質分析…………………………………………34
3.1碟狀分子單體之合成與鑑定…………………………………34
3.2碟狀分子單體之熱性質分析…………………………………34
3.3碟狀分子1M薄膜之紫外可見光光譜分析…………………35
3.4 碟狀分子1M薄膜之紅外光光譜分析………………………40
第四章具有不同感光基團之光配向材料之比較……………………42
4.1 聚合反應之機構………………………………………………42
4.2 薄膜定性研究…………………………………………………42
4.3 對不同液晶之配向特性………………………………………44
4.4誘導液晶排列方向之測量……………………………………46
4.5 曝光能量對不同光配向膜之影響……………………………50
4.6 熱穩定性測試…………………………………………………52
4.7 預傾角之生成與量測…………………………………………55
4.8 配向機制……………………………………………………58
第五章結 論……………………………………………………………59
第六章 參考文獻………………………………………………………61
List of Schemes
Scheme 1Synthetic route of triphenylene-based discotic compound1M…….………………………………………………..27
Scheme 2Synthetic route of triphenylene-based discotic compound2M…….…………………………………………………28
Scheme 3Synthetic route of triphenylene-based discotic compound3M…….…………………………………………………29
List of Figures
Figure 1-1.Fundamental molecular alignment of LC on substrate surface……………………………………………………...2
Figure 1-2.Fundamental molecular alignments of the nematic LC cell………………………………………………………….3
Figure 1-3.The formation of disclination line on LCD devices……………………………………………………...4
Figure 1-4.Illustration of the rubbing process…………………….…...5
Figure 1-5.Parallel alignment for surfaces treated with surfacecoupling agent (a), and coated with polymers (b).…………5
Figure 1-6.SiOx-obliquely evaporated surfaces without (a) and with(b) the perpendicular surface coupling agent………...…….6
Figure 1-7.Langmuir Blodget film……………………………………..6
Figure 1-8.Schematic of anisotropic molecular configurationswhich assuming to occur in linearly photopolymerized polymer films; P// =UV-curing polarization direcation...7
Figure 1-9.TN cell configuration. The LC medium arrangement in (a) off state (white state) and (b) on state (dark)………………8
Figure 1-10.Concept of multi-domain LC devices (a) 2-domain (b)4-domain…………………………………………………...11
Figure 1-11.Polarized light induced changes of a poly(vinylcinnamate)film surface………………………………………………...13
Figure 1-12.Polarized light induced changes of coumarin-basedPolymers……………………………………………………14
Figure 1-13.Polyimide for photo-alignment application………………..15
Figure 1-14.The cis (Z) and trans (E) isomeric forms of azobenzene…..15
Figure 1-15.Azobenzene-containing photo-alignment material………...15
Figure 1-16.Structure of (a) discotic nematic phase; ND (b) column nematic phase; NC (c) hexagonal ordered column phase;Dho (d) rectangular disordered column phase; Drd (P21/a) (e) Drd (C2/m) (f) oblique disordered columnar phase; Dob,d……………………………………………………...18
Figure 1-17.Typical structure of discotic LC molecules………………...19
Figure 1-18.Architectural concept of discotic LC molecules…………...20
Figure 1-19.The functional groups which are used in the study………...21
Figure 2-1.Molecular structure of the discotic compounds used in this study………………………………………………………..30
Figure 2-2.Experimental setups for the LPUV-induced LC alignment at normal or oblique incident angles………………….32
Figure 2-3.At Brewster’s angle, the refracted and reflected rays of anincident bean are perpendicular The transmitted beam is 42%s/58%p polarized for n =1.5…………………………...33
Figure 3-1.1H NMR spectrum of compound 1…………………………36
Figure 3-2.1H NMR spectrum of monomer 1M……………………….37
Figure 3-3.DSC thermogram of 1M…………………………………...38
Figure 3-4.UV absorption spectral changes of 1M film upon irradiation with 365 nm light………………………………39
Figure 3-5.FT-IR spectra of a film of 1M before (upper curve) and after (lower curve) irradiation with 365 nm light of a 15 J/cm2 exposure dose………………………………………41
Figure 4-1.Crosslinked structures formed by different discotic photo-alignment monomers (a) 1M (b) 2M and (c) 3M…...44
Figure 4-2.Experimental setups for measuring the UV-induced LC alignment direction………………………………………46
Figure 4-3.Polarized UV-Visible spectrum of a dye doped ZLI-4792 aligned by 1P photo-alignment layer. ( where A∥ and A⊥ are absorbances at λmax = 635 nm for 1P-cell obtained using polarized probe light with the electric vectors parallel and perpendicular to that of the actinic polarized light)………………………………………………………..47
Figure 4-4.Polar diagrams of the dye-doped homogeneous LPUV irradiated ZLI-4792 cells. Dye=1wt% M-137; (a) 1P-cell, (b) 2P-cell, (c) 3P-cell. Arrows indicate the polarization axis of the incident linearly polarized UV light……………49
Figure 4-5.The POM photograph of ZLI-4792 cells aligned by 1M discotic film irradiated with different exposure energy of LPUV………………………………………………………51
Figure 4-6.Changes of order parameter (S) of the dye M-137 dissolved in ZLI-4792 aligned by monomers 1M (●) 2M (▲) and 3M (■) which were irradiated with LPUV……….52
Figure 4-7.Thermal stability of the dye-doped LC cells of different photo-alignment layers: 1P (●) 2P (▲) and 3P (■). LC mixture: ZLI-4792 and Dye: M-137……………………….54
Figure 4-8.The POM photograph of the dye-doped LC cell of 1P at room temperature after heating to 160 oC for 10 minutes….54
Figure 4-9.Generation of pretilt angle with single oblique LPUV exposure……………………………………………………55
Figure 4-10.Experimental setups for the pretilt angle measurement……56
Figure 4-11.The pretilt angle of the cells aligned by 1M (●) 2M (▲) and 3M (■) which were irradiated by the single oblique exposure of LPUV. LC mixture: ZLI-4792………………...57
Figure 4-12.Pretilt angle measurement of the 1P aligned cell exposed at 45o oblique angle. From fittings, pretilt angle is found to be 0.86o………………………………………………………..58
List of Tables
Table 1.Assignment in the FT-IR Spectra of a Film Sample of the Discotic Compound 1M……………………………………41
Table 2.LC alignment characteristics in cells constructed using LPUV light irradiated discotic photo-alignment layers……45
Table 3.The measured order parameters of the dye-doped LC cells..49
1.Reinitzer, F. Monatsh. Chem. 1888, 9, 421.
2.Lehmann, O. Z. Phys. Chem. 1889, 4, 469.
3.Uchida, T. Mol. Cryst. Liq. Cryst. 1982, Suppl. 1, 1.
4.Stöhr, J.; Samant, M.G. J. Elec. Spectrosc. Relat. Phenom. 1999, 98, 189.
5.(a)Uchida, T. Mol. Cryst. Liq. Cryst. 1985, 123, 15. (b) Uchida, T.; Seki, H. Chap. 5 in Liquid Crystals Applications and Uses vol. 3; edited by Briendra Bahadur, World Scientific, Singapore, 1992.
6.Clark, N. A.; Lagerwall, S. T. Appl. Phys. Lett. 1980, 36(11), 899.
7.Uchida, T.; Ohgawara, M.; Wada, M. Jan. J. Appl. Phys. 1980, 19,2127.
8.Schadt, M.; Schmitt, K.; Kozinkov, V.; Chigrinov, V. Jan. J. Appl. Phys. 1992, 31,2155
9.O’Neill, M.; Kelly, S. M. J. Phys. D: Appl. Phys. 2000, 33, R67
10.Toyooka, T.; Yoda, E.; Kobri, Y.; Yamamashi, T. Display 1999, 20, 221.
11.Sergan, T. A.; Jamal, S. H.; Kelly, J. R. Display 1999, 20, 259.
12.Toyooka, T.; Yoda, E.; Kobri, Y.; Yamamashi, T.; Itoh, H. SID 98 Digest 1998, 698.
13.Mori, H.; Bos, P. J. SID 98 Digest 1998, 830.
14.Wu, S. T. Mater. Chem. Phys. 1995, 42, 163.
15.Kiefer, R.; Beber, B.; Windscheid, F.; Baur, G. Japan Display 1992, 557.
16.Wakemoto, H.; Asada, S.; Kato, N.; Yamamoto, Y.; Tsukane, M.; Tsurugi, T.; Tsuda, K.; Takubo, Y. SID 97 Digest 1997,929.
17.Wu, S. T. J. Appl. Phys.1994, 76, 5975.
18.Tadada, A.; Kataoka, S.; Sasaki, T.; Chida, H.; Tsuda, H.; Ohmuro, K.; Sasbayashi, T.; Koike, Y.; Okamoto, K. SID 98 Digest 1998, 75.
19.Wei, C. K.; Lu, Y. H.; Kuo, C. L.; Liu, C. Y.; Liu, H. D.; Chang, W. C.; Huang, H. P.; Cheng, C. M.; Yan, D. C. SID 98 Digest, 1998, 226.
20.Liu, W.; Kelly, J.; Chen J. SID 98 Digest 1998, 319.
21.Ohmuro, K.; Kataoka, S.; Sasaki, T.; Koike, Y. SID 97 Digest 1997, 845.
22.Yang, K. H. IDRC 91 Digest 1991, 68.
23.Takatori, K.; Sumiyoshi, K.; Hirai, Y.; Kaneko, S. Japan Display 1992, 591.
24.Koike, Y.; Kamada, T.; Okamoto, K.; Ohashi, M.; Tomita, I.; Okabe, M. SID 92 Digest 1992, 798.
25.Chen, J.; Bos, P. J.; Bryant, D. R.; Johnson, D. L.; Jamal, S. H.; Kelly, J. R. SID 95 Digest 1995, 865.
26.Sugiyama, T.; Katoh, K.; Saitoh, T.; Suzuki, H.; Iimura, Y.; Kobayashi, S. SID 95 Digest 1995, 877.
27.Wang, X.; Subacius, D.; Lavrentozich, O.; West, J. L.; Reznikov, Y. SID 96 Digest 1996, 654.
28.Murai, H.; Suzuki, M.; Suzuki, T.; Konno, T.; Kaneto, S. Liq. Cryst. 1998, 25(2), 131.
29.Iimura, Y.; Kobayashi, S. SID 94 Digest 1994, 915.
30.Lien, A.; John, R. A. Jpn. J. Appl. Phys. 1996, 35, 156.
31.Nick, A. J.; Aerle, M. V. Jpn. J. Appl. Phys. 1995, 34, L1472.
32.Vithana, H.; Johnson, D.; Bos, P.; Herke, R.; Fung, Y. K.; Jamal, S. Jpn. J. Appl. Phys. 1996, 35, 2222.
33.Nam, M. S.; Wu, J. W.; Choi, Y. J.; Yoon, K. H.; Jung, J. H.; Kim, J. Y.; Kwon, S. B. SID 97 Digest 1997, 933.
34.Chen, J.; Bos, P. J.; Byrant, D. R.; Johnson, D. L.; Jamal, S. H.; Kelly, J. R. SID 95 Digest 1995, 865.
35.Seo, D. S.; Kim, J. H. Liq. Cryst. 1999, 26(12), 1813.
36.Seo, D. S.; Matsuda, H.; Ohide, T.; Kobayashi, S. Mol. Cryst. Liq. Cryst. 1993, 224, 13.
37.Sasaki, T.; Fuji, H.; Nishikawa, M. Jpn. J. Appl. Phys. 1992, 31, L632
38.Kawata, Y.; Takatoh, K.; Hasegawa, M.; Sakamoto, M. Liq. Cryst. 1994, 16, 1027.
39.Lee, E. S.; Vetter, P.; Miyashita, T.; Uchida, T.; Kano, M.; Abe, M.; Sugawara, K. Jpn. J. Appl. Phys. 1993, 32, L1436.
40.Seo, D. S.; Kobayashi, S.; Kang, D. Y.; Yokoyama, H. Jpn. J. Appl. Phys. 1995, 34, 3607.
41.Perny, S.; Barny, P. L.; Delaire, J. Liq. Cryst. 2000, 27(3), 349.
42.Schadt, M.; Seiberle, H.; Schuster, A. Nature 1996, 381, 212.
43.Seo, D. S.; Choi, J. H. Liq. Cryst. 1999, 26(2), 291.
44.Seo, D. S.; Han, J. M. Liq. Cryst. 1999, 26(7), 959.
45.Nishikawa, M.; Kosa, T.; West, J. L. Jpn. J. Appl. Phys. 1999, 38, L334.
46.Nishikawa, M.; West, J. L. Jpn. J. Appl. Phys. 1999, 38, 5183.
47.Kidowaki, M.; Fujiwara, T.; Ichimura, K. Chem. Lett. 1999, 641.
48.Han, M.; Morino, S.; Ichimura, K. Chem. Lett. 1999, 645.
49.Furumi, S.; Nakagawa, M.; Morino, S.; Ichimura, K. Appl. Phys. Lett. 1999, 74, 2438.
50.Kim, J. H.; Acharya, B. R.; Ha, K.; Kumar, S. Appl. Phys. Lett. 1998, 73, 3372.
51.Kim, J. H.; Shi, Y.; Kumar, S.; Lee, S. D. Appl. Phys. Lett. 1997, 71, 3162.
52.Chen, J.; Johnson, D. L.; Bos, P. L.; Wang, X.; West, J. L. SID 96 Digest, 1996, 634.
53.Yamamoto, T.; Hasagawa, M.; Hatoh, H. SID 96 Digest, 1996, 642.
54.Kawatsuki, N.; Takatsuka, H.; Yamamoto, T. Jpn. J. Appl. Phys. 2000, 39, L230.
55.Chandrasekhar, S.; Sadashiva, B. K.; Saresh, K. A. Paramana 1977, 9, 471.
56.Hsu, C. S.; Wu, S. T.; Wu, L. H.; Lee, W. C. Jpn. J. Appl. Phys. 2000, 39, 5899.
57.Schadt, M.; Seiberle, H. SID 97 Digest. 1997, 397.
58.Braun C. D. and Lub J. Liq. Cryst. 1999, 26, 1501.
59.吳龍海,“碟狀液晶材料在光配向膜及光學補償膜上之應用”,交通大學應用化學研究所博士論文,八十九年七月。
60.Rossing T. D.; Chiaverina C. J. Chap. 7 in Light Science: Physics and the Visual arts; Springer: New York, 1999; p 156.
61.Perkampus, H. H. UV-VIS Spectroscopy and Its Application; Grinter C. H.; Threlfall, T. L., Eds.; Springer: Berlin, 1992; p 176.
62.Li, W.; Lyuch, V.; Thompson, H.; Fox, M. A. J. Am. Chem. Soc. 1997, 119, 7211
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 熊召弟,民85。真實的科學認知環境。教學科技與媒體,29,3-12。
2. 蔡錫濤、楊美雪,民85。情境式學習的教學設計。教學科技與媒體,30,48-53。
3. 許榮富、黃芳裕,民84。當今科學概念發展賦予科學學習的新意義。科學教育月刊,178,2-13。
4. 張國恩,民89。資訊融入各科教學內涵與實施。資訊與教育雙月刊,72,
5. 郭重吉,民81。從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,20,5,548-570。
6. 林奇賢,民87b。網路學習環境的設計與應用。資訊與教育雙月刊,66,
7. 林生傳,民87 。建構主義的教學評析。課程與教學季刊,1,3,1-14。(中華民國課程與教學學會)
8. 何榮桂,民89。教育部『資訊教育基礎建設計劃』與北、高兩市『資訊教育白皮書』簡介。資訊與教育雜誌,70,2-8。
9. 朱則剛,民83。建構主義知識論與情意認知的迷思─兼論其對認知心理學的意義。教學科技與媒體,13,3-14。
10. 田耐青,民88。由『電腦樂高』談新世紀的學習:一個『科技支援之建構學習環境』實例。教學科技與媒體雙月刊,44,24-35。
11. 方炎明,民78。近四十年來我國國民小學之科學教育。教育資料集刊第十四輯,國立教育資料館編印。
12. 王智玄,民89。新的學習策略─網路合作式的學習探討。資訊與教育雜誌,78,42-50。
13. 王千倖,民88。合作學習和問題導向學習---培養教師及學生的科學創造力。教育資料與研究,28,31-39。
14. 韓善民,民90。我國資訊教育發展現況與展望。資訊與教育雜誌,81,7-12。
15. 韓善民,民89。資訊教育推動現況與展望。資訊與教育雜誌,77,4-7。