跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 20:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林恩仕
研究生(外文):En-Shyh Lin
論文名稱:酚亞硫酸基轉移酵素之機制探討:氧化還原與核苷酸之影響
論文名稱(外文):Effect of Redox on the Interaction of Phenol Sulfotransferase and Nucleotides
指導教授:楊裕雄
指導教授(外文):Yuh-Shyong Yang
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:138
中文關鍵詞:酚亞硫酸基轉移酵素氧化還原核苷機制半胱胺酸
外文關鍵詞:Phenol SulfotransferaseRedoxNucleotidesInteractioncysteine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
酚亞硫酸基轉移酵素需要adenosine 3',5'-bisphosphate (PAP) or 3'-phospho adenosine 5'-phosphosulfate (PAPS) 當成輔因子或輔受質,進行亞硫酸基催化反應。本論文內容包含四部份:首先建立新的分析方法,測量PAP或PAPS於picomole範圍及分析PAPS純度;進一步決定豬肝、鼠肝、大腸桿菌中PAP量。第二、我們得知ribose和adenine是輔因子與酵素結合上主要兩區域。從解離常數發現許多不同種類核苷酸也能緊密地與酵素結合;其中adenosine 5'-monophosphate, adenosine 2',5'-bisphosphate and adenosine 2':3'-cyclic phosphate 5'-phosphate可以取代PAP進行催化反應。並利用光譜儀、HPLC、31P-NMR觀察亞硫酸基轉移活性與最終產物;測量酵素Vmax和輔因子或輔受質進行亞硫酸基轉移之Km。第三、探討酚亞硫酸基轉移酵素中雙硫鍵調節酵素功能之角色。用氧化還原試劑處理,發現只有同時存在66與232位置時,PAP與酵素間解離常數會有明顯程度變化。測量酵素Vmax和PAP之Km,於不同氧化還原狀態下之影響;但突變66與232位置,仍發現微小程度改變。證實66與232位置為調節酚亞硫酸基轉移酵素氧化還原之活性,是經由控制核苷酸結合或釋放所導致。最後研究核苷酸在不同氧化還原狀態效果,發現PAP和N6-(6-aminohexyl) adenosine 3',5'-diphosphate活化及穩定酚亞硫酸基轉移酵素。利用5,5'-Dithiobis (2,2'-nitrobenzoate)測量酚亞硫酸基轉移酵素中半胱胺酸氧化程度。於初步氧化時活性不受影響,此時有兩個半胱胺酸被氧化;進一步氧化使酵素失去活性。

Sulfuryl group transfer catalyzed by phenol sulfotransferase (PST) requires adenosine 3',5'-bisphosphate (PAP) or 3'-phospho adenosine 5'-phosphosulfate (PAPS) as cofactor or cosubstrate, respectively. Firstly, this work presents novel colorimetric methods not only to measure PAP and PAPS in the range of picomoles, but also to determine the purity of PAPS or PAP contaminants in PAPS in the range of nanomoles. Furthermore, this method is used to determine the amount of PAP in extracts of pig liver, rat liver, and Escherichia coli. Secondly, we find that ribose and adenine, two major parts of the adenosine nucleotide, bind tightly to PST separately, and various nucleotides also bind tightly to PST. We determine the dissociation constants of a variety of nucleotides and examine their potential as cofactors or cosubstrates of PST. Adenosine 5'-monophosphate, adenosine 2',5'-bisphosphate and adenosine 2':3'-cyclic phosphate 5'-phosphate, are shown to be sulfated at 5’-phopho position by a PST catalyzed reaction. Spectrophotometry, HPLC, and 31PNMR are used to determine the activity of PST and identify the sulfated nucleotides. The Vmax of PST and Km of these nucleotides are determined when they are used as cofactors or cosubstrates for the sulfuryl group transfer. Thirdly, we study the role of disulfide bonds in regulating enzyme function. In different redox condition, by treating the protein with GSSG or Tris (2-carboxyethyl) phosphine, the dissociation constants of PAP and PST may differ four orders of magnitude but only in the presence of both C66 and C232. Km (PAP) and Vmax of the PST and its cysteine mutants are affected in different redox condition, but are less significant for those mutants whose C66 and C232 were mutated. We conclude that Cys66 and Cys232 regulate the activity of phenol sulfotransferase with redox environment through the control of nucleotide binding and release. Fnally, we investigated the effect of nucleotides, PAP and N6-(6-aminohexyl) adenosine 3',5'-diphosphate, on the activity and stability of PST in different redox status. Using 5,5'-Dithiobis (2,2'-nitrobenzoate) to react with the PST and its mutants, we are able to identify the order of oxidation on each cysteine residue. Initial oxidation of PST does not affect the activity of PST. In this stage only two cysteines are oxidized. Further oxidation of PST results in the loss of enzyme activity.

CONTENTS PAGE
Abstract (Chinese)..........................................................................................i
Abstract (English)...........................................................................................ii
Acknowledgement………………………………………………..................iii
Contents..........................................................................................................iv
Abbreviation and Symbol...............................................................................vi
Chapter 1. Introduction……………………..................………………..1
I.Background and Significance..............................................................…1
1.Importance of Sulfotransferase...................................................................…1
2.Literature Review of Sulfotransferases........................................................…6
3.Enzymatic Mechanism of Sulfuryl Group Transfer........................................…11
4.General Methods for the Assay of Phenol Sulfotransferase.............................…15
II.Reference……….....................................................................................18
Chapter 2. Colorimetric determination of the purity of 3’-phospho adenosine
5’-phosphosulfate and natural abundance of 3’-phospho adenosine 5’-phosphate
at picomole quantities......................................................................................24
I.Materials and Methods........................................................................….28
II.Results…..................….........................................................………..….32
III.Discussion.….........................................................................……….….37
IV.Reference……….....................................................................................42
Chapter 3. Nucleotide binding and sulfation catalyzed by phenol sulfotransferase48
I.Materials and Methods........................................................................….51
II.Results…..................….........................................................………..….55
III.Discussion.….........................................................................……….….58
IV.Reference………......................................................................................61
Chapter 4. The mechanism of redox regulation by cys66 and cys232 of phenol
sulfotransferase……………………………….....................………………..68
I.Materials and Methods........................................................................….71
II.Results…..................….........................................................………..….76
III.Discussion.…........................................................................………..….79
Chapter 5. Nucleotides as cofactor, antioxidation and stabilization reagent of
phenol sulfotrasnferase....................................................................................94
I.Materials and Methods........................................................................….97
II.Results and Discussion.…....................................................………..….102
IIIReference…..........................................................................………..….106
Appendix………………………………………………........................……115
I.Structure ..............................................................................................….115
II.Publication …........................................................................………..….117
1.Biochemical and Biophysical Research Communication 271,818-822, 2000 ….….117
2.Analytical Biochemistry 264,111-117, 1998....................................………..….122
3.Chemico-Biologicol Interactions 109,129-135, 1998........................………..….129
Autobiography…………………………………………........................……136

1. Huxtable, R. J. (1986) Sulfates in Biochemistry of Sulfur, Plenum Publishing Co., New York, NY.
2. Mulder, G. J. (1990) Conjugation Reactions in Drug Metabolism, (Mulder, G.J., ed) pp.134-144, Taylor & Francis Ltd., London
3. Jakoby, W. B. (1990) Conjugation Reactions in Drug Metabolism, (Mulder, G.J., ed), Taylor & Francis Ltd., London, pp.134-144
4. Williams, R. T. (1947) Detoxication Mechanisms, Chapmam & Hall, London
5. Roy, A. B. (1960) Advances in Enzymology, 22: 205
6. Jakoby, W. B., and Ziegler, D. M. (1990) J. Biol. Chem. 265: 20715-20718.
7. Pasqualini, J. R., Schatz, B., Varin, C. and Nguyen, B.L. (1992) J Steroid Biochem Mol Biol 41:323-329
8. Mulder, G. J. (1981) Sulfation of Drugs and Related Compounds, (Mulder, G.J., ed), CRC Press, Inc., Florida, pp.213-226
9. Glatt, H., Henschler, R., Frank, H., Seidel, A., Yang, C. X., Abu-Shqara, E. and Harvey, R. G. (1993) Carcinogenesis 14:599-602
10. Surh, Y. J., Kwon, H., and Tannernbaum, S. R. (1993) Cancer Res 53:1017-1022
11. Falany, C. N., Wheeler, J., Coward, L., Keehan, D., Falany, J. L. and Barnes, S. (1992) J Biochem Toxicol 7:241-248
12. Monteith, D. K. (1992) Mutat Res 282:253-258
13. Sekura, R. D. Duffel, M. W. and Jakoby, W. B. (1981) Method in Enz 77: 197-213
14. Axelson, M.(1985) FEBS Lett., 191: 171-175
15. Radominska, A., Comer, K.A., Zimniak, P., Falany, J., Iscan, M. and Falany, C. N. (1990) Biochem J 272: 597-604
16. Goto, J., Chikai, T. and Nambara, T. (1987) Journal of Chromatography 415: 45-53
17. Yousef, I.M., Barnwell, S.G., Tuchweber, B., Weber, A. and Roy, C.C. (1987) Hepatology 7: 535-542
18. Kuipers, F., Enserink, M., Havinga, R., vander Steen, A.B.M, Hardonk, M.J. Fevery, J. and Vonk, R.J. (1988) Journal of Clinical Investigation 81: 1593-1599
19. Kuipers, F., Heslinga, H., Havinga, R. and Vonk, R.J. (1986) American Journal of Physiology 251: 18914
20. Lack, L, Tantawi, A., Halevy, C. and Rockett, D. (1984) American Journal of Physiology 246: 745-749
21. Buu, N.T. (1985) Journal of Neurochemistry 45:470-476; 1612-1619.
22. Tyce, G.M., Messick, J.M., Yaksh, T.L. and Byer, D.E. (1986) Federation Proceedings 45: 2247-2253
23. Rivett, A.J., Eddy, B.J. and Roth, J.A. (1982) Journal of Neurochemistry 39: 1009-1016
24. Whittemore, R.M. and Roth, J.A. (1985) Biochemical Pharmacology 34: 3853-3856
25. Wang, P.-C., Buu, N.T., Kuchel, O. and Genest, J. (1983) Journal of Laboratory and Clinical Medicine 101: 141-151
26. Buu, N.T., Nair, G., Kuchel, o. and Genest., J. (1981) Journal of Laboratory and Clinical Medicine 98: 527-535
27. Demassieux, S., Bordeleau, L., Gravel, D. and Carriere, S. (1987) Life Sciences 40: 183-191
28. Kuchel, O., Buu, N.T. Racz, K., de Leon, A., Serri, O. and Kynel, J. (1986) Federation Proceedings 45: 2254-2259
29. Iqbal, S. Vickers, C., and Elias, E. (1990) J Hepatol 11: 37-42
30. Shan, X., Aw, T.Y., Smith, E.R. Ingelman-Sundberg, M., Mannervik, B., Iyanagi, T. and Jones, D.P. (1992) Biochem Pharmacol 43: 2421-2426
31. Roos, R.A., Steenvoorden, J.M., Mulder, G.J. and Van Kempen, G.M. (1993) 43: 1373-1376
32. Massaad L, de Waziers I, Ribrag V, Janot F, Beaune PH, Morizet J, Gouyette A, Chabot GG. (1992) Cancer Res., 52: 6567-6575.
33. Burri, R., Steffen, C., Stieger, S., Brodlbeck, U., Colombo, J.B. and Herschkowitz, N. (1990) Mol Chem Neuropathol 13: 57-69
34. Roche, P. Debelle, F., Maillet, F., Lerouge, P. Faucher, C. Truchet, G. Denarie, J. and Prome, J.-C. (1991) Cell 67: 1131-1143
35. Born, J., Gunnarsson, K., Bakker, M.A.H., Kjell, L., Kusche-Gullberg, M. Maccarana, M., Berden, J.H.M. and Lindahl, U. (1995) J Biol Chem 270, 31303-31309.
36. Yuen, C.-T., Bezouska, K., O’rien, J., Stoll, M., Lemoine, R., Lubineau, A., Kiso, M., Hasegawa, A., Bockovich, N.J., Nicolaou, K.C., Feizi, T., (1994) J Biol Chem 269: 1595
37. Hemmerich, S., Rosen, S.D., (1994) Biochemistry 33: 4830
38. Jakoby, W. B., Duffel, M. W., Lyon, E.S., and Ramaswamy, S. (1984) Progress in Drug Metabolism (Bridges, J.W., and Chasseaud, L.F., eds), Taylor & Francis Ltd., London pp. 11-33
39. Reisenfeld, J., Hook, M. and Lindahl, U. (1982) J Biol Chem 257: 421-424
40. Nakanishi, Y., Shimizu, M., Otsu, K., Kato, S., Tsuji, M. and Suzuki, S. (1981) J Biol Chem 256: 5443-5448
41. Sekura, R.D. and Jakoby, W.B. (1979) J Biol Chem 254: 5658-5663
42. Ogura, K., Kajita, J., Narihata, H., Watabe, T., Ozawa, S., Nagata, K., Yamazoe, Y. and Kato, R. (1989) Biochem Biophys Res Commun 165: 168-174
43. Ogura, K., Kajita, J., Narihata, H., Watabe, T., Ozawa, S., Nagata, K., Yamazoe, Y., Kato, R. (1990) Biochem Biophys Res Commun 166: 1494-1500
44. Demyan, W.F., Song, C.S. Kim D.S., Her, S., Gallwitz, W., Rao, T.R., Slomczynska, M., Chatterjee, B., and Roy, A. (1992) Mol Endocrinol 6: 589-597
45. Sekura, R.D. and Jakoby, W.B. (1981) Arch Biochem Biophys 211: 352-359
46. Hirshey, S.J. and Falany, C.N. (1990) J 270: 721-728
47. Gong, D., Ozawa, S., Yamazoe, Y., and Kato, R. (1991) J. Biochem (Tokyo) 110, 226-231
48. Ozawa, S., Nagato, K. gong, D.W., Yamazoe, Y., and Kato, R.(1990) Nucleic Acids Res, 18: 4001
49. Chen, X., Yang, Y. S., Zheng, Y., Martin, B.B., Duffel, M.W., and Jakoby, W.B. (1992) Protein Expression and Purification 3, 421-426
50. Hirshey, S.J., Dooley, T.P., Reardon, I.M., Heinrikson, R.L., and Falany, C.N. (1992) Mol Pharmacol, 42: 257-264
51. Yerokun, T., Teheredge, J.L., Norton, T.R., Carter, H.A., Chung, K.H., Birckbichler, P.J. and Ringer, D.P. (1992) Cancer Res 52: 4779-4786
52. Nagata, K., Ozawa, S., Miyata, M., Shimada, M., Gong, E.-W., Ymazoe, Y., and Kato, R. (1993) J Biol Chem 268: 24720-24725
53. Zhu, X., Veronese, M.E., Bernard, C. C.A., Sansom, L.N., and McManus, M.E. (1993) Biochem Biophys Res Commun 195: 120-127
54. Zhu, X., Veronese, M.E., Sanxom, L.N., and McManus, M.E. (1993) Biochem Biophys Res Commun 192: 671-676
55. Wilborn, T.W., Comer, K.A., Dooley, T.P, Reardon, I.M., Heinrikson, R.L. and Falany, C.N. (1993) Mol Pharmacol 43: 70-77
56. Bernier, F., Leblanc, G., Labrie, F., and Luu-The, V. (1994) J Biol Chem 269: 28200-28205
57. Wood, T.C., Aksoy, I.A., Aksoy, S., and Weinshilboum, R.M. (1994) Biochem Biophys Res Commun 198: 1119-1127
58. Yang, Y. S., McPhie, P., Chen, X., and Jakoby, W.B. (1995) The FASEB Journal 9: 1295
59. Kiehlbauch, C. C., Lam, Y. F., and Ringer, D. P. (1995) J Biol Chem 270: 18941-18947
60. Guo, W. X., Yang, Y. S., Chen, X., McPhie, P., and Jakoby, W. B. (1994) Chemico-Biological Interactions 92: 25-31
61. Ramaswamy, S.G. and Jakoby, W.B. (1987) J Biol Chem 262: 10039-10043
62. Jones, A.L., Hagen, M., Coughtrie, M.W.H., Roberts, R.C. and Glatt, H.R. (1995) Unpublished, Data Submission to NCBI: MCoughtrie, M.W.H.
63. Yang, Y.-S., Marshall, A.D., McPhie, P., Guo, W.-X., Xie, X., Chen, X., and Jakoby, W.B. (1996) Protein Expression and Purification, 8, 423-429
64. Kim, D-H., Konishi, L., and Kobashi, K. (1986) Biochimica Biophysica Acta 872: 33-41
65. Duffel, M.W. and Jakoby, W.B. (1981) J Biol Chem 256: 1123-1127
66. Barnes, S., Waldrop, R., Crenshaw, J., King, R.J. and Taylor, K.B. (1986) J Lipid Res 27: 1111-1123
67. Frerot, O., and Vargas, F. (1991) Biochem Biophys Res Commun 181: 989-996
68. Leyh T. S. (1993) Crit Rev Biochem Mol Biol. 28: 515-542.
69. Duffel MW, Chen G, Sharma V. (1998) Chem Biol Interact.109: 81-92.
70. Marsolais, F. and Varin, L. (1995) J Biol Chem 270: 30458-30463.
71. Marsolais, F. and Varin, L. (1997) Eur J Biochem. 247: 1056-1062.
72. Ong E, Yeh JC, Ding Y, Hindsgaul O, Pedersen LC, Negishi M, Fukuda M. (1999) J Biol Chem. 274: 25608-15612.
73. Negishi M, Pedersen LG, Petrotchenko E, Shevtsov S, Gorokhov A, Kakuta Y, Pedersen LC. (2001) Arch Biochem Biophys. 390: 149-157.
74. Duffel, M.W. and Jakoby, W.B. (1981) J Biol Chem 256: 1123-1127
75. Yang, Y.-S., Pan, J.-J. AND Hwang, J.-K. (1997) Protein Engineering, 10: 70
76. Konishi-Imamura, L., kim, D-H., and Kobashi, K. (1992) Biochem Int 28: 725-734
77. Borchardt., R.T., Schasteen, C.S. and Wu, S.-E. (1982) Biochim Biophys Acta 708: 280-29
78. Zheng, Y., Bbergold, A. and Duffel, M.W. (1994) J Biol Chem 269, 30313-30319.
79. Johnson, K.A. and Benkovic, S.J. (1990) The Enzyme, Vol. XIX, Academic Press, pp. 109-211
80. Fersht, A. (1985) Enzyme Structure and Mechanism. 2nd ed. W.H. Freeman and Company, New York, p.369-388
81. Abeles, R.H., Frey, P.A., and Jencks, W.P. (1992) Biochemistry. Jones and Bartlett Publishers, pp.403-426
82. Varin, L., Marsolais, F. and Brisson, N. (1995) J Biol Chem 270: 12498-12502

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 劉佳灝、陳明星(民89)。線上測驗系統之需求分析與實作。建國學報,19(2),783-792。
2. 彭泰源、張惠博(民89)。國小五年級學童「力與運動」概念學習之研究。科學教育(彰化師大),10,231-262。
3. 劉伍貞(民86)。國小學生月相概念學習之研究。國民教育研究,1, 229-261。
4. 董正玲、郭重吉(民81)。利用晤談方式探究國小兒童運動與力概念的另有架構。科學教育(彰化師大),3, 93-123。
5. 黃萬居(民83)。國小高年級學生的認知階層與酸鹼概念之研究。臺北市立師範學院學報,25,1-35。
6. 曾千虹、耿正屏(民82)。國小、國中及高中學生之細胞概念發展。科學教育(彰化師大),4,157-182。
7. 謝秀月(民82)。教材影響學生科學概念學習之初探--以國小自然科學電動機單元為例。臺南師院學報,26,239-254。
8. 潘文福(民86)。國小學生種子萌芽迷思概念之探討。屏師科學教育,6,18-27。
9. 全中平(民85)。國民小學五年級學生對學習力與運動概念之分析研究。臺北師院學報,9,405-426。
10. 陳佩正(民85)。國民小學污染概念研究。臺北師院學報,9,485-516。
11. 許民陽(民84)。國小學童對方向及位置兩空間概念認知發展的研究(2)--國小中年級學童對東西南北相關方位的認知探討。臺北市立師範學院學報,26,213-244。
12. 莊志彥、蘇育任(民88)。國小學童知覺選擇與動物分類概念之研究。科學教育學刊,7(2),135-156。
13. 盛承堯(民82)。國小自然科學溶液概念及迷思概念之探討。花師數理教育學報,2,1-44。
14. 唐文華(民88)。同步互動式遠距教學技術與實施方法研究。教學科技與媒體,44,13-23。
15. 邱關誼(民89)。應用線上測驗評量試題難易之網路題庫系統。資訊與教育,76,47-55。