跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張書文
研究生(外文):Shu-Wen Chang
論文名稱:紫外光可聚合三苯基雙乙炔液晶單體在寬頻譜膽固醇偏光板與偏極化電激發光上的應用
論文名稱(外文):Synthesis of UV-Curable Bistolane Liquid Crystals and Their Applications in Broad-band Cholesteric Polarizer and Polarized Electroluminescence
指導教授:許千樹
指導教授(外文):Chain-Shu Hsu
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:187
中文關鍵詞:偏極化電激發光寬頻譜膽固醇液晶偏光板
外文關鍵詞:Polarized ElectroluminescenceBroad-band Cholesteric Polarizer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:659
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目的為合成三個系列含側向取代基之三苯基雙乙炔衍生物液晶單體,探討其在光電方面的應用。本研究合成出三苯基雙乙炔衍生物之單體分別為monoacrylate單體、monooxirane單體、diacrylate單體,所有不對稱之三苯基雙乙炔衍生物皆具有互變型(enantiotropic)向列型液晶相,在單體設計方面,三苯基雙乙炔衍生物在苯環上導入側取代基可以降低液晶相溫度,在末端苯環上具有不對稱之末端基與側取代基能有效降低液晶之熔點,在中央苯環上之側取代基能干擾液晶之結晶,液晶在降溫過程有延遲結晶的現象,其液晶相溫度可延伸至低於0 ℃。所合成出三苯基雙乙炔側鏈液晶聚合物分別為polyacrylate及polyoxirane聚合物,皆具有互變型向列型液晶相,其液晶相溫度範圍涵蓋室溫。
本研究第二部份將探討三苯基雙乙炔液晶對於膽固醇偏光板的應用,三苯基雙乙炔液晶的折射異率方向性隨著波長減少而增大,由紅光區域0.30增逐漸增大至藍光區域的0.58,與膽固醇 chiral dopant 摻混,得到的膽固醇液晶兼具大的折射率異方向性與低熔點。膽固醇液晶迴火排列之後,以紫外光交聯造成 pitch gradient,可得到涵蓋全可見光波段之膽固醇反射式偏光板。
本研究第三部分將探討三苯基雙乙炔液晶在電激發光的應用。三苯基雙乙炔液晶的UV吸收波峰都在330 nm 左右,在螢光發射光譜方面,三苯基雙乙炔液晶在THF溶液中之螢光發射波長在380 nm左右,而其在薄膜之光激發光波峰在430 nm左右,三苯基雙乙炔液晶在薄膜之螢光發光波峰較在THF溶液中紅位移約50 nm,由於液晶分子間彼此有很強的aggregation傾向,分子之間的耦合較好,其共軛長度較長,螢光發射光譜大幅紅位移。三苯基雙乙炔液晶電激發光波長與其螢光發射光譜相近,顯示其發光機構相同,然而其電激發光效率不高,只有1.2 × 10-2 lm/W。本研究最後探討三苯基雙乙炔液晶在偏極化電激發光的應用,對於不同配向材料對液晶的配向效果,以polyimide(PI)最好,polyaniline(PA)次之,poly(3,4-diethylene dioxythiophene)(PEDOT)較差,其配向能力與分子的剛硬程度成正比。三苯基雙乙炔液晶偏極化之的UV-vis 吸收光譜、螢光發射光譜與電激發光光譜,其平行於定向摩擦方向光譜強度皆大於垂直於定向摩擦方向,顯示發光基團排列方向皆與定向摩擦方向相同。UV-vis 吸收光譜最佳之偏極化值為15.2 ,螢光發射光譜最佳之偏極化值為13.8,電激發光光譜最佳之偏極化值為7.1,其液晶排列秩序度為0.67。
The goal of this study is aimed to synthesize three series of highly conjugated bistolane liquid crystals (LC) with lateral substituents and their corresponding polymers. The corresponding monoacrylate, monooxirane, and diacrylate monomers based on bistolane mesogenes are synthesized. All of the obtained asymmetric monomers reveal an enantiotropic nematic phase. Bistolane liquid crystals with lateral substituents exhibit low melting point and wide nematic range. The synthesized polyacrylates and polyoxiranes containing bistolane side groups exhibit the glass transition temperatures at about 5℃ and the nematic to isotropic temperatures at about 90℃.
In the second part of this study, the reflective cholesteric polarizers based on the bistolane monomers are investigated. The birefringences of the LC monomers are in the range from 0.35 - 0.6 depending on the measuring wavelength. Blending the bistolane LC with the chiral dopant, the corresponding cholesteric LC exhibits a low melting point and high birefringence. The cholesteric LC mixtures were aligned between two glass substrates and cured by UV radiation to form the broad-band cholesteric liquid crystal polarizer.
In the third part of this study, the optical properties of obtained monomers and polymers are investigated. All of the bistolane liquid crystals present UV absorption peaks at about 330 nm, and both solution and film samples show very similar absorption spectra. The PL emissions of bistolane liquid crystals measured in THF and in solid state are at about 380 nm and 430 nm, respectively. The emission maxima of the films are red-shifted compared to the maxima in the solution. These phenomena indicate that the mesogenic groups have the tendency to aggregate in the solid-state and resulted in the decrease of band gap. The EL spectra of bistolane liquid crystals are similar to the PL spectra of bistolane LC. These results indicate that the PL and EL mechanisms of bistolane LCs are similar.
Finally, the polarized EL based on the bistolane monomers was investigated. Polyimide (PI), polyaniline (PA), and poly(3,4-diethylene dioxythiophene) (PEDOT) are used as alignment materials for LCs. The dichroic ratios of the PI-, PA-, and PEDOT-aligned LCs are PI > PA > PEDOT. PI shows the highest alignment ability. The reason could be due to a more linear and rigid main chain structure of PI. The dichroic ratio is defined as the parallel to perpendicular emission intensity. The best dichroic ratios for UV, PL, and EL are 15.2, 13.8, and 7.1, respectively. The order parameter of LC that was coated on PEDOT in the EL device is 0.67.
中文摘要………………………………………………………….….…i
英文摘要……………………………………………………………….iii
謝誌…………………………………………………………………….v
目錄…………………………………………………………………….vi
Scheme目錄…………………………………………………………...x
Figure目錄…………………………………………………………..xi
Table目錄……………………………………………………………..xvi
第一章 緒論…………………………………………………………...1
1.1液晶簡介………………………………………………..………...1
1.1.1 液晶的起源……………………………………...……………..1
1.1.2熱向型液晶之分類與分子排列……………………………….2
1.1.3 棒狀液晶分子……………………………………………………7
1.2 反射式偏光板簡介………………………………..…...….…8
1.2.1 液晶顯示器的顯示原理……………………………………...…8
1.2.2 反射式偏光板的原理………………………………………….. 10
1.2.3 膽固醇反射式偏光板……………………………..……………11
1.3 有機電激發光簡介…………………………………..………….15
1.3.1 有機電激發光的起源…………………………………………15
1.3.2 電激發光原理與高分子發光二極體………………….……..18
1.3.3高分子發光二極體材料簡介…………………………………25
1.3.4 偏極化的高分子發光二極體……………………………….25
1.4 研究動機………………………………………………………40
1.4文獻回顧………………...………………………………….40
1.4.2分子設計………...……………………………………………43
第二章 實驗部份…………………………………………………….44
2.1 試藥………………………………………………………………..44
2.2 測試儀器………………………………………………………......44
2.3 單體1M ~ 11M之合成………………………………………..…47
2.4 聚合物1P ~ 4P之合成………………………………………..…70
第三章 合成反應之結果與性質分析……………………………….84
3.1 單體的合成與重要的反應機構………………………………..84
3.1.1 Cadiot-ChodKiewicz偶合反應…………………………..…...84
3.1.2 環氧化反應………………………………………………...…86
3.1.3 脫丙酮反應………………………………………………...…86
3.1.4 鹼性下的碘化反應………………………………………...…87
3.1.5 酸性下的碘化反應……………………………………….…..89
3.1.6 聚合物1P ~ 4P 的合成…………………………………...…90
3.2 單體的結構鑑定………………………………………..….…...91
3.2.1 Monoacrylate與monooxirane單體1M ~ 4M的結構鑑定….91
3.2.2 Diacrylate單體5M ~ 11M的結構鑑定………………………92
3.2.3 聚合物1P ~ 4P的結構鑑定………………………………….93
3.3化合物的性質分析………………………………………….…..98
3.3.1 Monoacrylate與monooxirane單體1M ~ 4M………………..98
3.3.2 Diacrylate單體5M ~ 11M…………………………………102
3.3.3 聚合物1P ~ 4P………………………………………..…….104
第四章 寬反射頻譜膽固醇偏光板的製作……………………...…..108
4.1 三苯基雙乙炔分子的折射率異方向性…………………...….108
4.2 膽固醇液晶的調配與相轉移溫度的鑑定………………...….111
4.3 配向層的製作……………………………………………..….114
4.4 膽固醇液晶的迴火與排列………………………………..….114
4.4.1 單片配向層排列膽固醇液晶……………………………....114
4.4.2 兩片配向層排列膽固醇液晶……………………………....116
4.4.3膽固醇液晶的迴火與配向條件………………………..…117
4.5 寬反射波段之膽固醇液晶偏光板製作與性質鑑定……...…122
第五章 化合物的光電性質及偏極化發光二極體的製作….………127
5.1 UV-vis 吸收光譜與螢光發射光譜………………………...…127
5.1.1 單體1M ~ 4M與聚合物1P ~ 4P……………………………127
5.1.2 單體5M ~ 11M……………………………………………..132
5.2 電激發光光譜………………………………………………...135
5.2.1 聚合物1P ~ 4P的電激發光性質…………………………..…135
5.2.2 Diacrylate化合物的電激發光性質……………………..……..140
5.3 氧化還原數據分析……………………………………………144
5.3.1 氧化還原電位的測量與計算……………………………….144
5.3.2 聚合物1P ~ 4P的氧化還原性質…………………….…….145
5.3.3 單體5M ~ 11M的氧化還原性質………………………….145
5.4 化合物二極體性質的量測…………………………………...153
5.5 偏極化電激發光的應用……………………………………...155
5.5.1 配向層的製作………………………………………..………155
5.5.2偏極化UV-vis吸收、螢光與電激發光性質的量測……….156
5.5.3 聚合物1P ~ 4P的偏極化光學性質……………………….156
5.5.4 單體6M ~ 11M的偏極化光學性質………………………..160
第六章 結論…………………………………………………….….175
參考文獻………………………………………………...………...178
學術著作表….………………………………………...…………..186
附錄………………………………………………………………..188
List of Schemes
Scheme 1-1 Isomerization of the chiral dopant used in the reflective polarizer………………………………………………….. 14
Scheme 2-1 Synthesis of monomer 1M………………………….…... 72
Scheme 2-2 Synthesis of monomer 2M………………………….…... 73
Scheme 2-3 Synthesis of monomer 3M ……….…………………….. 74
Scheme 2-4 Synthesis of monomer 4M………………..…………….. 75
Scheme 2-5 Synthesis of compounds 12a ~ 12b……………………… 76
Scheme 2-6 Synthesis of monomers 5M ~ 9M……………………….. 77
Scheme 2-7 Synthesis of monomers 11M and 12M…………………... 78
Scheme 2-8 Synthesis of polymers 1P ~ 4P…………………………... 79
Scheme 3-1 The mechanism of coupling reaction used (PPh3)2PdCl2 as catalyst…………………………………………………… 85
Scheme 3-2 The mechanism of reduction reaction used base as catalyst.…………………………………………………... 87
List of Figures
Fig. 1-1 Alignment structure of nematic liquid crystal………………. 2
Fig. 1-2 Alignment structure of cholesteric liquid crystal……………. 4
Fig. 1-3 Alignment structure of smectic liquid crystal……………….. 5
Fig. 1-4 Relative molecular alignment structures of smectic liquid crystal………………………………………………………... 5
Fig. 1-5 Alignment structure of discotic liquid crystal……………….. 6
Fig. 1-6 The structure of TN liquid crystal cell………………………. 9
Fig. 1-7 Operating principle of the reflective polarizer………………. 11
Fig. 1-8 Molecular structures of the broad band cholesteric liquid crystal polarizer materials…………………………………… 13
Fig. 1-9 Granjean texture of cholesteric liquid crystal……………….. 13
Fig. 1-10 Schematic of the EL device……………..…………………... 17
Fig. 1-11 The structures of PVK and PPV…………………………….. 17
Fig. 1-12 The structure of single-layer type OLED device……………. 20
Fig. 1-13 Band diagram of excitation formation in EL ……………… 20
Fig. 1-14 Energy diagram of excitation formation in EL…………….. 21
Fig. 1-15 Schematic energy-level diagram for an ITO/PPV/Al device………………………………………………………. 21
Fig. 1-16 Structures of double-layer-type OLED device…………….. 26
Fig. 1-17 Structures of triple-layer-type OLED device……………… 26
Fig. 1-18 PPV derivatives and their emission color range…………… 27
Fig. 1-19 Poly(alkylthiophene) derivatives and their emission color range………………………………………………………… 27
Fig. 1-20 Examples of blue-emitting materials………………………. 28
Fig. 1-21 Examples of copolymers materials………………………… 28
Fig. 1-22 Polymers aligned by mechanical stretching……….………. 32
Fig. 1-23 Polymers aligned by rubbing……………….……………… 32
Fig. 1-24 Conjugated polymers with LC side chains………………… 33
Fig. 1-25 Langmuir-Blodgett film……………………………………. 34
Fig. 1-26 Polymers aligned by liquid-crystalline self-organization…... 37
Fig. 1-27 The structure of poly(2,5-diisopentoxy-p-phenylene vinylene)……………………………………………………. 38
Fig. 1-28 Structures of conjugated liquid crystalline polymers……… 38
Fig. 1-29 Structures of the main polymer with arylenevinylene segments……………………………………………………. 39
Fig. 1-30 Structures of PF2/6、PI and ST638………………………... 39
Fig. 3-1 1H-NMR spectra of monomer 1M…………………………… 94
Fig. 3-2 13C-NMR spectra of monomer 1M…………………………... 95
Fig. 3-3 1H-NMR spectra of monomer 3M…………………………… 96
Fig. 3-4 13C-NMR spectra of monomer 3M…………………………... 97
Fig. 3-5 DSC thermogram of monomer 2M.…………………………. 99
Fig. 3-6 Optical polarizing micrographs of monomer 2M at 60℃…... 99
Fig. 3-7 DSC thermogram of monomer 9M…………………….……. 103
Fig. 3-8 The steric hindrance of monomers 2M and 6M.…….…….... 103
Fig. 3-9 DSC thermogram of polymer 1P…………………...………. 105
Fig. 3-10 Optical polarizing micrographs of monomer 9M…………… 116
Fig. 3-11 TGA thermalgram of polymer 1P………………………….. 107
Fig. 3-12 TGA thermalgram of polymer 3P…………………………… 107
Fig. 4-1 The UV-vis spectrum of the empty LC cell…………………. 109
Fig. 4-2 The wavelength—dependent birefringence of 1M at 25℃…… 110
Fig. 4-3 The wavelength—dependent birefringence of 3M and 9M at 25℃………………………………………………………….. 114
Fig. 4-4 The structure of the cholesteric LC chiral dopant…………… 111
Fig. 4-5 DSC thermogram of cholesteric LC contains 95% monomer 9M and 5% monomer 12M.………………………………… 113
Fig. 4-6 The structure of polyimide…………………………………... 120
Fig. 4-7 The transmittance spectra of cholesteric LC contains 95% monomer 9M and 5% monomer 12M………………………. 124
Fig. 4-8 Pitch gradient of cholesteric liquid crystal film…………..…. 124
Fig. 4-9 The transmittance of cholesteric liquid crystal film…………. 125
Fig. 4-10 UV-visible spectrum of cholesteric LC contains 95% monomer 9M and 5% monomer 12M………………………. 125
Fig. 4-11 UV-visible spectra of monomer 9M………………………. 126
Fig. 5-1 The UV-Vis absorption and fluorescence spectra of monomer 1M…………………………………………………………… 127
Fig. 5-2 The UV-Vis absorption and fluorescence spectra of polymer 1P……………………………………………………………. 128
Fig. 5-3 The fluorescence spectra of monomer 3M in solid state……. 130
Fig. 5-4 The UV-vis absorption and photoluminescence diagrams of compounds…………………………………………………… 131
Fig. 5-5 The UV-Vis absorption and fluorescence spectra of monomer 1M~6M……………………………………………………… 134
Fig. 5-6 The fluorescence spectra of monomer 11M…………………. 134
Fig. 5-7 The UV-Vis absorption and fluorescence spectra of monomer 5M…………………………………………………………… 135
Fig. 5-8 The pattern of the ITO glass (anode)……………………..…. 137
Fig. 5-9 The structures of PEDOT/PSS molecules.…………………... 137
Fig. 5-10 The geometry of PEDOT oligomers and PSS polymers…..… 138
Fig. 5-11 The random coil structure of PEDOT/PSS in solution………. 138
Fig. 5-12 The pattern of the Al electrode (cathode)………………...….. 140
Fig. 5-13 The pattern of the device………………………...…………... 141
Fig. 5-14 The structure of the device…………………………………... 141
Fig. 5-15 EL emission spectrum of an ITO/PEDOT/polymer/Al device. 142
Fig. 5-16 EL emission spectrum of an ITO/8M/Al device…………….. 142
Fig. 5-17 Cyclic voltammogram of the oxidation and energy band diagram of polymer 1P…………………………………….… 146
Fig. 5-18 Cyclic voltammogram of the oxidation and energy band diagram of polymer 2P……………………………………… 146
Fig. 5-19 Cyclic voltammogram of the oxidation and energy band diagram of polymer 3P………………………………………. 147
Fig. 5-20 Cyclic voltammogram of the oxidation and energy band diagram of polymer 4P……………………………………… 147
Fig. 5-21 Cyclic voltammogram of the oxidation and energy band diagram of cross-linked film 5M……………………………. 148
Fig. 5-22 Cyclic voltammogram of the oxidation and energy band diagram of cross-linked film 6M……………………………. 148
Fig. 5-23 Cyclic voltammogram of the oxidation and energy band diagram of cross-linked film 7M……………………………. 149
Fig. 5-24 Cyclic voltammogram of the oxidation and energy band diagram of cross-linked film 8M……………………………. 149
Fig. 5-25 Cyclic voltammogram of the oxidation and energy band diagram of cross-linked film 9M……………………………. 150
Fig. 5-26 Cyclic voltammogram of the oxidation and energy band diagram of cross-linked film 10M…………………………… 150
Fig. 5-27 Cyclic voltammogram of the oxidation and energy band diagram of cross-linked film 11M…………………………… 151
Fig. 5-28 The J-V (□) and L-V (○) curves of ITO/PEDOT/1P/Al device………………………………………………………… 154
Fig. 5-29 The J-V (□) and L-V (○) curves of ITO/PEDOT/9M/Al device………………………………………………………… 154
Fig. 5-30 The instrument for measuring polarized UV light.……….…. 161
Fig. 5-31 The instrument for measuring polarized PL light.……..……. 162
Fig. 5-32 The instrument for measuring polarized EL light.…..………. 162
Fig. 5-33 The structures of three alignment materials…………………. 163
Fig. 5-34 Polarized optical spectra of polymer 1P on rubbed PI films… 167
Fig. 5-35 Polarized optical spectra of polymer 1P on rubbed PA films.. 167
Fig. 5-36 Polarized optical spectra of polymer 1P on rubbed PEDOT films………………………………………………………….. 168
Fig. 5-37 Polarized EL spectrum of an ITO/rubbed PEDOT/polymer 1P/Al device………………………………………………… 168
Fig. 5-38 Polarized optical spectra of LC network of 9M on rubbed PI films………………………………………………………….. 172
Fig. 5-39 Polarized optical spectra of LC network of 9M on rubbed PA films………………………………………………………….. 172
Fig. 5-40 Polarized optical spectra of LC network of 9M on rubbed PEDOT films………………………………………………… 173
Fig. 5-41 Polarized EL spectrum of an ITO/rubbed PEDOT/LC network of 9M/Al device…………………………………… 173
List of Tables
Table 1-1 The work function of electron injection electrodes. 23
Table 1-2 Dependence of emission efficiency on electron injecting electrodes of PPV devices………………………………… 24
Table 2-1 Characterization of monomer 1M ~ 11M…………………. 80
Table 3-1 Polymerization results of monomer 1M ~ 4M……………. 91
Table 3-2 Phase transition temperatures and corresponding enthalpy changes of monomer 1M ~ 4M and compounds 5 and 8… 100
Table 3-3 Transition temperatures and corresponding enthalpy changes of monomer 6M ~ 11M………………………….. 101
Table 3-4 Phase transition temperatures and corresponding enthalpy changes of polymers 1P ~ 4P……………………………… 106
Table 4-1 Phase transition temperatures and corresponding enthalpy changes of cholesteric LC.………………………………… 114
Table 4-2 The results of cholesteric LC aligned by three kinds of alignment layers with different rubbed frequency………… 120
Table 4-3 The results of cholesteric LC aligned by three kinds of alignment layers with different rubbed depth.…………….. 121
Table 4-4 The results of cholesteric LC aligned by three kinds of alignment layers with different rubbed speed.…………….. 121
Table 5-1 The UV-vis absorption and photoluminescence spectra of monomers 1M ~ 4M and polymers 1P ~ 4P in THF and in films……………………………………………………….. 131
Table 5-2 The UV-Vis absorption and fluorescence spectra of monomers 1M~6M………………………………………... 133
Table 5-3 The electroluminescence spectra of polymers 1P ~ 4P and LC networks 6M ~ 11M…………………………………… 143
Table 5-4 Electro-optical properties of polymers 1P ~ 4P and cross-linked films of 5M ~ 9M……………………...…….. 152
Table 5-5 The dichroic ratios of polymer 1P aligned by three kinds of alignment layers with different rubbed frequency………… 164
Table 5-6 The dichroic ratios of polymer 1P aligned by three kinds of alignment layers with different rubbed depth……………... 165
Table 5-7 The dichroic ratios of polymer 1P aligned by three kinds of alignment layers with different rubbed speed……………... 166
Table 5-8 The dichroic ratios of monomer 9M aligned by three kinds of alignment layers with different rubbed frequency……… 169
Table 5-9 The dichroic ratios of monomer 9M aligned by three kinds of alignment layers with different rubbed depth…………... 170
Table 5-10 The dichroic ratios of monomer 9M aligned by three kinds of alignment layers with different rubbed speed…………... 171
Table 5-11 The dichroic ratios of LC polymers and networks aligned by three kinds of alignment layer………………………….. 174
參考文獻:
1. Reinitzer, F. Monatsh. Chem. 1888, 9, 421.
2. Lehmann, O. Z. phys. Chem. 1889, 4, 469.
3. Gooby, J. W. Liq. Cry. 1998, 24, 25.
4. “Thermotropic Liquid Crystals” edited by G. W. Gray (Wiley), 1987.
5. “Color TFT Liquid Crystal Displays” edited by SEMI Standard FPD Tecnology Group, 1996.
6. Castellano, J. A. Liq. Cryt. Today 1991, 1, 4.
7. Schadt, M.; Belayev, S. V.; Barnik, M. I. Jpn. J. Appl. Phys. 1990, 29, L634.
8. Broer, D. J.; Lub, J.; Mol, G. N. Nature 1995, 378, 467.
9. Chen, S. H.; Mastrangelo, J. C.; Jin, R. J. Adv. Mater. 1999, 11, 1183.
10. Broer, D. J.; Mol, G. N.; Harren, J. A. M. M.; Lub, J. Adv. Mater. 1999, 11, 573.
11. Weber, M. F. SID Digest 1992, 427.
12. Weber, M. F. SID Digest 1993, 669.
13. Weber, M. F. US Patent 5 422 756, 1995.
14. Winston, R.; Holman, R. L.; Jacobson, B. A.; Emmons, R. M.; Glerkman, P. US Patent 5 528 720, 1997.
15. Thelen, A. J. Opt. Soc. Am 1963, 53, 1266.
16. Schrenk, W. J.; Chang, V. S.; Wheatley, J. A. US Patent 5 612 820, 1997.
17. Witte, P.; Brehmer, M.; Lub, J. J. Mater. Chem. 1999, 9, 2087.
18. Bernanose, E.; Comte, M.; Vouaux, P. J. Chim. Phys. 1953, 50, 64.
19. Bernanose, E.; Vouaux, P. J. Chim. Phys. 1953, 50, 261.
20. Bernanose, E. J. Chim. Phys. 1955, 52, 396.
21. Bernanose, E.; Vouaux, P.; J. Chim. Phys. 1955, 52, 509.
22. Gurnee, E.; Fernandez, R. US Patent 3 172 862, 1965.
23. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
24. Helfrich, W.; Schneider, W. G. J. Chem. Phys. 1966, 44, 2902.
25. Roberts, G. G.; McGinnity, M. M.; Barlow, W. A.; Vincett, P. S. Solid State Commun. 1979, 32, 683.
26. Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G. Thin Solid Films 1982, 94, 171.
27. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
28. Patridge, R. H. Polymer 1983, 24, 733.
29. Burrouhted, J. H.; Bradley, D. D. C.; Brown, A. R.; Mackay, R. N.; Friend, R. H.; Burns, P. L.; Homes, A. B. Nature 1990, 347, 539.
30. Braun, D.; Heeger, A. Appl. Phys. Lett. 1991, 58, 1982.
31. Chen, C. H.; Shi, J.; Tang, C. W. Macromol. Symp. 1997, 125, 1.
32. Dresner, J. RCA Rev. 1969, 30, 332.
33. Brutting, W.; Buchwald, E.; Rgerer, G.; Meier, M.; Zuleeg, K.; Schwoerer, M. Synth. Met. 1997, 84, 677.
34. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1988, 55, 1489.
35. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. 1988, 27, L269.
36. Adachi, C.; Tsutsui, T.; Saito, S. Jpn, J. Appl. Phys. 1988, 27, L713.
37. Kido, J. Bull. Electrochem. 1994, 10, 1.
38. Kido, J.; Kimura, M.; Nagi, K. Science 1995, 267, 1332.
39. Cao, G. Y.; Treacy G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1993, 357, 111.
40. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402.
41. Hwang, D. H.; Kim, S. T.; Li, X. C.; Chuah, B. S.; DeMello, J. C.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Abstr. Pap. Am. Chem. S. 1997, 213, 319.
42. Koch, F.; Heitz, W. Macromol. Chem. Phys. 1997, 198, 1531.
43. Pfeiffer, S.; Horhold, H. H. Macromol. Chem. Phys. 1997, 200, 1870.
44. Sarnecki, G. J.; Brun, P. L.; Kraft, A.; Reiend, R. H.; Holmes, A. B. Synth. Met. 1993, 55, 91.
45. Hoger, F. W. S.; Zhang, C.; Pakbz, K.; Heeger, A. J. Polym. Prepr. 1993, 34, 197.
46. Gurge, R. M.; Sarker, A.; Lathti, P. M.; Hu, B.; Karasz, F. E. Macromolecules 1996, 29, 4287.
47. Gowri, R.; Mandal, D.; Shivkumar, B.; RamaKrishnan, S. Macromolecules 1998, 31, 1819.
48. Leclerc, M.; Diaz, F. M.; Wegner, G. MaKromol. Chem. 1989, 190, 3105.
49. Mao, H.; Holdcroft, S. Macromolecules 1992, 25, 554.
50. Gill, R. E.; Malliaras, G. G.; Wildeman, J.; Hadziioannou, G. Adv. Mater. 1994, 6, 132.
51. Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.; Andwersson, M. R.; Hjertberg, T.; Wennerstorm, O. Nature 1994, 372, 444.
52. Andwersson, M. R.; Berggren, M.; Inganas, O.; Gustafsson, G.; Gustafesson-Carlberg, J. C.; Selse, D.; Hjerberg, T.; Wennerstorm, O. Macromolecules 1995, 28, 7525.
53. Miyazki, Y.; Yamamoto, T. Chem. Lett. 1994, 41.
54. Berggren, M.; Gustafsson, G.; Inganas, O.; Andwersson, M. R.; Hjerberg, T.; Wennerstorm, O. J. Appl. Phys. 1994, 76, 7530.
55. Yangf, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 79, 934.
56. Uchida, M.; Ohmori, Y.; orishima, C. M.; Yoshino, K. Synth. Met. 1993, 57, 4168.
57. Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
58. Grell, M.; Bradley, D.D.C.; Inbasekaran, M.; Woo, E. P. Adv. Mater. 1997, 9, 798.
59. Yang, Z.; Hu, B.; Karssz, F. E. Macromolecules 1995, 28, 6151.
60. Brun, P. L.; Holmes, A. B.; Kraft, A.; Bradley, D. D. C.; Brown, A. R.; Friend, R. H.; Gymer, R. W. Nature 1992, 356, 47.
61. Moratti, S. C.; Cervini, R.; Holmes, A. B.; Baigent, D. R.; Friend, R. H.; Greenham, N. C.; Gruner, J.; Hamer, P. J. Synth. Met. 1995, 71, 2117.
62. Pang, Y.; Li, J.; Hu, B.; Karasz, F. Macromolecules 1999, 32, 3946.
63. Greenham, N. C.; Moratti, S.C.; Brsdley, D. D.C.; Friend, R. H.; Holmers, A. B.; Nature 1993, 365, 628.
64. Moratti, S. C.; Cervini, R.; Holmers, A. B.; Baigent, D. R.; Friend, R. H.; Greenham, N. C.; J.; Gruner, P. J. Hamer, Synth. Met. 1995, 71, 2117.
65. Dyeklev, P.; Berggren, M.; Inganas, O.; Adersson, M. R.; Wennerstrom, O.; Hjertberg, T. Adv. Mater. 1995, 7, 43.
66. Contoret, A. E. E. A.; Farrar, S. R.; Jackson, P. O.; Khan, S. M.; May, L.; O’Nell, M.; Nicholls, J. E.; Jelly, S. M.; Rechards, G. J. Adv. Mater. 2000, 12, 971.
67. Bradley, D. D. C.; Friend, R. H.; Lindenberger, H.; Roth, S. Polymer 1986, 27, 1709.
68. Lemmer, U.; Vacar, D.; Moses, D.; Heeger, A. J.; Ohnish, T.; Noguchi, T. Appl. Phys. Lett. 1996, 68, 3007.
69. Aerle, N. A. J. M.; Barmentlo, M.; Hollering, R. W. J. J. Appl. Phys. 1993, 74, 3111.
70. Hamaguchi, M.; Yoshino, K. Jpn. J. Appl. Phys. Part 2 1995, 34, 712.
71. Oguma, J.; Akagi, K.; Shirakawa, H. Synth. Met. 1999, 101, 86.
72. Akagi, K.; Oguma, J.; Shibata, S.; Toyoshima, R.; Osaka, I.; Shirakawa, H. Synth. Met. 1999, 102, 1287.
73. Strohriegl, P.; Jandke, M.; Gmeiner, J.; Brutting, W.; Schwoerer, M. Adv. Mater. 1999, 11, 1518.
74. Hamaguchi, M.; Yoshino, K. Appl. Phys. Lett. 1995, 67, 3381.
75. Dyreklev, P.; Inganas, O. J. Appl. Phys. 1994, 76, 7915.
76. Cimrova, V.; Remmers, M.; Neher, D.; Wegner, G. Adv. Mater. 1996, 8, 146.
77. Moore, A. J.; Bryce, M. R. Thin Solid Films 1994, 224, 936.
78. Schwiegk, S.;Vahlenkamp, T.; Xu, Y.; Wegner, G. Macromolecules 1992, 25, 2513.
79. Nishikata, Y.; Kakimoto, M. A.; Imai, Y. Thin Solid Films 1989, 179, 191.
80. Schwiegk, S.; Vahlenkamp, T.; Wegner, G. Thin Solid Films 1992, 210, 6.
81. Neher, D. Adv. Mater. 1995, 7, 691.
82. Memeger, W. Macromolecules 1989, 22, 1577.
83. Yu, L.; Bao, Z. Adv. Mater. 1994, 6, 156.
84. Lussem, G.; Festage, R.; Greine, A.; Wendorff, J. H.; Hopmeier, M. Feldmann, H.; J. Adv. Mater. 1995, 7, 923.
85. Christ, T.; Glusen, B.; Greiner, A.; Kettner, A.; Sander, R.; Stumpflen, V.; Tsukruk, V.; Wendorff, J. H. Adv. Mater. 1997, 9, 48.
86. Tokuhisa, H.; Era, M.; Tsutsui, T. Appl. Phys. Lett. 1998, 72, 2369.
87. Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Adv. Mater. 1997, 9, 798.
88. Oberski, J.; Festay, R.; Schmidt, C.; Lussem, G.; Wendorff, J. H.; Greiner, A. Macromolecules 1995, 28, 8676.
89. Martin, G.; Knoll, W.; Lupo, D.; Meisel, A.; Mitera, T.; Neher, D. Adv. Mater. 1995, 691, 11.
90. Grell, M.; Bradley, D. D. C. Adv. Mater. 1999, 11, 895.
91. Sariciftci, N. S.; Lemmer, U.; Vacar, D.; Heeger, A. J.; Jassen, A. J. Adv. Mater. 1996, 8, 651.
92. Bradley, D. D. C.; Bacher, A.; Bentley, P. G.; Douglas, L. K.; Glarvey, P. A.; Grell, M.; White, K. S.; Turner, M. L. J. Mater. Chem. 1999, 9, 2985.
93 Lussem, G.; Geffareh, F.; Greiner, A.; Weitz, W.; Hopmeier, M.; Oberski, M.; Unterlechner, C.; Wendroff, J. H. Liq. Cryst. 1996, 21, 903.
94. Gill, R. E.; Hadziioannou, G. Adv. Mater. 1997, 9, 331.
95. Grell, M.; Knoll, W.; Lupo, D.; Meisel, A.; Miteva, T.; Neher, D.; Nothofer, H. G.; Scherf, U.; Yasuda, A. Adv. Mater. 1999, 11, 671.
96. Oberski, J.; Festag, R.; Schmidt, C.; Lussem, G.; Wendorff, J. H.; Greiner, A. Macromolecules 1995, 28, 8676.
97. Lussem, G.; Festag, R.; Greiner, A.; Schmidt, C.; Unterlechner, C.; Heitz, W.; Wendorff, J. H.; Hopmier, M.; Feldmann, J. Adv. Mater. 1995, 2, 923.
98. Davey, A. P.; Howard. R. G.; Blan, W. J. J. Mater. Chem. 1997, 7, 417.
99. Ozaki, M.; Fujisawa, T.; Fuji, A.; Tong, L.; Yoshino, K.; Kijima, M.; Kinoshita, I.; Shirakawa, H. Adv. Mater. 2000, 12, 587.
100. Pugh, C.; Percec, V. J. Poly. Sci: Part A 1990, 28, 1101.
101. Wu, S. T.; Hsu, C. S.; Shyn, K. F. Appl. Phys. Lett. 1999, 75, 344.
102. 徐國峰, 碩士論文: 高折射率液晶化合物之合成與鑑定,民國八十七年.
103. 莊雅雲, 碩士論文: 高折射率液晶化合物之合成與鑑定,民國八十八年.
104. Wu, S. T.; Hsu, C. S.; Shyu, k. F.; Chuang, Y. Y., Cheng, H. B. Jpn. J. Appl. Phys. 2000, 39, L38.
105. Yang, D. K.; Doane, J. W.; Yaniv, Z.; Glasser, J. Appl. Phys. Lett. 1994, 64, 1905.
106. 葉鑑毅, “藍光發光二極體之開發與研究” 民國八十九年.
107. “Optics and nonlinear optics of liquid crystals” Khoo , I. C. and Wu, S. T., World Scientific, Singapore, 1993.
108. De Vries, H. Acta Crystallogr 1951, 4, 219.
109. Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S. Synth. Met. 2000, 111, 139.
110. Pei, J.; Yu, W. L.; Huang, W.; Heeger, A. J. Macromolecules 2000, 33, 2462.
111. Yang, C. J.; Jenekhe, S. A. Macromolecules 1995, 28, 1880.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top