跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳憲偉
研究生(外文):Hsien_Wei Chen
論文名稱:高分子/黏土/鋰金屬鹽所組成之奈米級高分子電解質複合材料之研究
論文名稱(外文):The Study on Polymer/Clay/Lithium salts Nanocomposite Electrolyte
指導教授:張豐志
指導教授(外文):Feng-Chih Chang
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:220
中文關鍵詞:固態高分子電解質黏土(蒙托土)奈米複合材料離子導電值
外文關鍵詞:solid state polymeric electrolyteclay(montmorillonite)nanocompositeionic conductivity
相關次數:
  • 被引用被引用:7
  • 點閱點閱:705
  • 評分評分:
  • 下載下載:172
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在研究蒙托黏土對於高分子電解質導電行為的影響。其研究結果可指出,添加經由有機分子改質過的有機黏土於高分子電解質中可大幅的提升系統的離子導電值。經由交流阻抗分析儀(a.c. Impedance)、DSC熱分析儀、紅外線光譜儀(FTIR)與固態核磁共振光譜(Solid-state NMR)的量測結果發現,黏土中的矽酸鹽片、金屬陽離子與高分子鏈上官能基間存在著特殊作用力,此種特殊作用力乃是屬於路易式酸鹼性的吸引力。因為黏土中的矽酸鹽片層帶有負電荷,其扮演著與高分子官能基相同的角色(路易士鹼),因而可吸附鋰陽離子。在第四章PEO/LiTf/Clay系統中,添加有機黏土會使部份的鋰金屬陽離子與矽酸鹽片錯合,並因而改變了陽離子(Li+)的錯合型態,此錯合型態的改變亦伴隨著高分子鏈段的更自由性,並也導致了更高的結晶熔點(Tm)與更大的高分子結晶度(Xc %)。另外,於第五章PAN/LiTf/Clay系統中更可發現,有機黏土的存在可增加系統的極性,因此高極性的鋰金屬鹽離子將能更輕易地於此具有高極性的高分子環境中解離。
為了要更進一步的了解高分子/黏土間相容的行為對系統導電值的影響,在第六章中分別使用不同的界面活性劑來有機化黏土,以製造出不同性質的高分子電解質材料。雖然黏土中的矽酸鹽片與金屬陽離子間存在著特殊作用力,然而此作用力的大小主要主要決定於黏土於高分子鏈段間的分散情形。在(PEO)8LiClO4/DDAC-oClay此剝離型態黏土分佈的電解質系統下,有機黏土會產生眾多帶有負電荷的矽酸鹽片層並且均勻的分散於高分子間,矽酸鹽片表面上的電子能與鋰金屬陽離子作用並造成鋰金屬鹽離子鹽的解離與導電值的提高。當DDAC-oClay = 2.9 wt%時,系統不但擁有最高的導電值8×10-5 S/cm,亦具有相當不錯的薄膜機械性質。
為了要使高分子電解質薄膜具有高離子導電的實用價值,在第七章中,以EC當作可塑劑並組成PMMA/LiClO4/EC/Clay之膠態高分子電解質。研究結果指出,添加少量(5 wt%)經由DDAC分子改質過後的有機黏土於P(MMA)8LiClO4(75)/EC(25)電解質系統中,可有效的提升系統的離子導電值達50倍之多,此高分子電解質薄膜不但擁有高的離子導電值(6×10-4 S/cm),並具有相當良好的機械性質,此類“奈米複合材料膠態高分子電解質”極具有可商業化的潛力。
添加有機黏土於高分子電解質中不但可提高系統的導電特性,亦仍能保持高分子原本優良的機械性質,本論文提出了由「高分子/鋰金屬鹽/黏土」所組成的“奈米複合材料高分子電解質”以期能對國內電池產業的發展有所助異。
The objective of this study is to investigate the effect of the montmorillonite on the ionic conductivity behavior. The result has demonstrated that the addition of optimum content of the organo-modified montmorillonite (oClay) is able to enhance the ionic conductivity drastically. Specific interactions among silicate layer, ethyl oxide and lithium cation have been investigated using alternating current impedance (a.c. Impedance), differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR), and Solid-state NMR. The specific interaction is attributed to the Lewis acid-base interaction. These negative charges on the silicate layers can play the same role as the polar functional group in polymer (Lewis base) to interact with lithium cations. In the chapter 4, PEO/LiTf/Clay system, the presence of the oClay tends to influence the complex form by drawing lithium cations away from the original polymer matrix into the silicate layers’ region. The shift of the complex form will also accompany with the higher chain flexibility, different melting point (Tm), and crystallinity (Xc%). Additionally, the results of chapter 5 reveal that the presence of the oClay in the PAN/LiTf/Clay system can also increase the system’s dipolar property, and results in the lithium salts more easily dissociated.
In order to further understand the effect of intercalated property of polymer/oClay on the ionic conductivity. A model system based on poly(ethylene oxide) (PEO) doped with LiClO4 and incorporated with different oClay is investigated in the chapter 6. Although the strong interactions occur between the silicate layer and the dopant salt LiClO4 within the PEO/clay/LiClO4 system, however, the strength of this specific interaction depends on the extent of PEO intercalation. In the exfoliated clay system, (PEO)8LiClO4/DDAC-oClay, great numbers of the negative charges in the silicate layers can be dispersed homogeneously in the polymer matrix, huge numbers of negative charges on the silicate layers can interact with the lithium cation and results in the high ionic conductivity. When the DDAC-mClay = 2.9 wt%, the (PEO)8LiClO4/DDAC-oClay polymer film not only possesses the highest ionic conductivity (8×10-5 S/cm) but also maintains the excellent dimensionally stability.
In order to achieve the commercial purpose, study on the effect of adding specific amount of ethylene carbonate (EC) to the P(MMA)8LiClO4/Dclay system has also been carried out in the chapter 7. This study has demonstrated that the addition of an optimum content (5 wt%) of the oClay increases the ionic conductivity of the PMMA-based electrolyte by nearly forty times (6×10-4 S/cm) relative to the plain P(MMA)8LiClO4(25)/EC(75) system. These novel plasticized nanocomposite films not only give significantly higher conductivity but also possess improved dimensional stability for potential commercial applications. Adding clay not only enhances the ionic conductivity, but also sustains the mechanical property of the electrolytes.
中文摘要 …………………………………………………………… i
英文摘要 …………………………………………………………… iii
誌謝 …………………………………………………………… v
目錄 …………………………………………………………… vii
表目錄 …………………………………………………………… x
圖目錄 …………………………………………………………… xi
符號說明 …………………………………………………………… xv
第一章、 緒論……………………………………………………… 1
第二章、 文獻回顧………………………………………………… 6
2-1 電池的誕生……………………………………………… 6
2-2 鋰二次電池的發展……………………………………… 9
2-3 高分子鋰電解質簡介…………………………………… 18
2-3-1 導電機制………………………………………………… 22
2-3-2 高分子電解質的發展…………………………………… 26
2-3-3 高分子電解質之種類…………………………………… 30
2-3-4 溫度對高分子電解質之影響…………………………… 36
2-4 目前鋰高分子電池發展現況及展望…………………… 38
2-5 奈米材料的概念………………………………………… 43
2-5-1 奈米級複合材料的型態………………………………… 46
2-6 參考文獻………………………………………………… 51
第三章、 研究動機與實驗設計…………………………………… 56
3-1 研究動機………………………………………………… 56
3-2 實驗設計………………………………………………… 59
3-3 實驗材料………………………………………………… 63
3-4 實驗儀器………………………………………………… 66
第四章、 探討由高分子PEO/黏土(clay)/鋰金屬鹽(LiCF3SO3)所組成之“奈米級之高分子電解質複合材料”…………
68
4-1 前言……………………………………………………… 68
4-2 實驗方式………………………………………………… 69
4-2-1 試樣準備………………………………………………… 69
4-2-2 黏土的有機化過程……………………………………… 70
4-2-3 固態高分子電解質的製備……………………………… 71
4-2-4 廣角x-ray光譜散射實驗………………………………… 72
4-2-5 離子導電值的量測……………………………………… 72
4-2-6 微分掃描卡計量測……………………………………… 73
4-2-7 紅外線光譜分析………………………………………… 74
4-3 結果與討論……………………………………………… 75
4-3-1 奈米複合材料之分散型態……………………………… 75
4-3-2 導電值的量測…………………………………………… 77
4-3-3 DSC熱分析實驗………………………………………… 81
4-3-4 紅外線光譜分析………………………………………… 85
4-4 結論……………………………………………………… 88
4-5 參考文獻………………………………………………… 89
第五章、 探討高分子poly(acrylonitrile)/黏土(clay)/鋰金屬鹽(LiCF3SO3)所組成的“奈米級之高分子電解質複合材料” …………………………………………………….
102
5-1 前言……………………………………………………… 102
5-2 實驗方式………………………………………………… 103
5-2-1 試樣準備………………………………………………… 103
5-2-2 黏土的有機化過程……………………………………… 104
5-2-3 固態高分子電解質的製備……………………………… 104
5-2-4 廣角x-ray光譜散射實驗………………………………… 105
5-2-5 穿透式電子顯微鏡……………………………………… 105
5-2-6 紅外線光譜分析………………………………………… 106
5-2-7 固態核磁共振實驗……………………………………… 106
5-2-8 介電性質分析…………………………………………… 106
5-2-9 離子導電值的量測……………………………………… 108
5-3 結果與討論……………………………………………… 108
5-3-1 奈米複合材料之分散型態……………………………… 108
5-3-2 紅外線光譜分析………………………………………… 110
5-3-3 固態核磁共振實驗……………………………………… 115
5-3-4 介電性質的探討………………………………………… 116
5-3-5 導電值的量測…………………………………………… 118
5-4 結論……………………………………………………… 121
5-5 參考文獻………………………………………………… 123
第六章、 探討不同界面活性劑處理之黏土對高分子PEO/鋰金屬鹽(LiCF3SO3)電解質之影響……………………………
143
6-1 前言……………………………………………………… 143
6-2 實驗方式………………………………………………… 144
6-2-1 試樣準備………………………………………………… 144
6-2-2 黏土的有機化過程……………………………………… 144
6-2-3 固態高分子電解質的製備……………………………… 146
6-2-4 廣角x-ray光譜散射實驗………………………………… 146
6-2-5 離子導電值的量測……………………………………… 147
6-2-6 微分掃描卡計量測……………………………………… 147
6-2-7 紅外線光譜分析………………………………………… 147
6-3 結果與討論……………………………………………… 148
6-3-1 黏土有機化程序………………………………………… 148
6-3-2 奈米複合材料之分散型態……………………………… 150
6-3-3 DSC熱分析實驗………………………………………… 153
6-3-4 紅外線光譜分析………………………………………… 157
6-3-5 離子導電值的量測……………………………………… 162
6-4 結論……………………………………………………… 165
6-5 參考文獻………………………………………………… 167
第七章、 高分子PMMA/黏土(clay)/鋰金屬鹽(LiClO4)與可塑劑EC所組成的“奈米級之高分子電解質複合材料”……
182
7-1 前言……………………………………………………… 182
7-2 實驗方式………………………………………………… 184
7-2-1 試樣準備………………………………………………… 184
7-2-2 PMMA/Clay奈米複合材料的製造程序………………… 185
7-2-3 固態高分子電解質的製備……………………………… 187
7-2-4 廣角x-ray光譜散射實驗………………………………… 187
7-2-5 紅外線光譜分析………………………………………… 187
7-2-6 固態核磁共振實驗……………………………………… 187
7-2-7 離子導電值的量測……………………………………… 188
7-3 結果與討論……………………………………………… 188
7-3-1 奈米複合材料之分散型態……………………………… 188
7-3-2 紅外線光譜分析………………………………………… 191
7-3-3 13C固態核磁共振實驗…………………………………… 195
7-3-4 離子導電值的量測……………………………………… 198
7-4 結論……………………………………………………… 202
7-5 參考文獻………………………………………………… 203
第八章、 總結……………………………………………………… 217
作者簡歷 …………………………………………………………… 219
著作目錄 …………………………………………………………… 220
1. 林振華、林振富,充電式鋰離子電池,全華科技出版社,台北,民國九十年。
2. Fey, T. K. In Modern Engineering & Technology Seminar, METS: Hsinchu, Taiwan, 1992; p 7.
3. Linden, D. In Handbook of Batteries, 2nd ed.; McGraw-Hill: New York, 1994.
4. Besenhard, J. O. In Handbook of Battery Materials; Wiley-VCH: Weinheim, Germany, 1999.
5. Wakihara, M.; Yamamoto, O. In Lithium Ion Battery: Fundamental & Performance; Wiley-VCH: Weinheim, Germany, 1998.
6. Yamaura, J.; Pzaki, Y.; Morita, A.; Ohta, A. J Power Sources 1993, 43/44, 233.
7. Peled, E.; Golodnitsky, D.; Ardel, G. J Electrochem Soc 1997, 144, 208.
8. Winter, M.; Besenhard, J. O.; Novak, P. Adv Mater 1998, 10, 725. Scrosati, B. J Electrochem Soc 1992, 139, 2776.
9. Megahed, S.; Scrosati, B. Interface 1995, 4, 34.
10. Owen, J .R. Chem Soc Rev 1997, 26, 259.
11. Armand, M. B.; Nato Conf, Ser. IV: Mater Sci, D. w. Murphy et. al. ed., 145-161 (1980).
12. 宋金穎,博士論文,國立清華大學化學工程研究所,民國八十九年。
13. Peled, E. J Electrochem Soc 1979, 126, 2047.
14. Peled, E.; Golodnitsky, D.; Ardel, G.; Eshkenazy, V. Electrochim Acta 1995, 40, 2197.
15. Peled, E.; Golodnitsky, D.; Penciner, J. In The Anode/Electrolyte Interface, in Handbook of Battery Materials; Besenhard, J. O., Ed.; Wiley-VCH: Weinheim, Germany, 1999; p 419.
16. Ein-Eli, Y. Electrochem Solid State Lett 1999, 2, 212.
17. Brummerm, S. B.; Koch, V. R. In The Recharging of the Lithium Electrode in Organic Electrolytes: in Materials for Advanced Batteries; Murphy, D. W.; Broadhead, J.; Steel, B. C. H., Eds.; Plenum Press: New York, 1980; p 12.
18. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Matter Res Bull 1980, 15, 783.
19. Honders, A.; der Kinderen, J. M.; van Heeren, A. H.; de Wit, J. H. W.; Broers, G. H. J. Solid State Ionics 1985, 15, 265.
20. Thomas, M. G. S. R.; Burce, P. G.; Goodenough, J. B. Solid State Ionics, 1986, 18/19, 794.
21. Kikkawa, S.; Miyazaki, S.; Koizumi, M. J Power Sources, 14, 231, 1985.
22. Fan, J.; Fedkiw, P. S. J Power Sources 1998, 72, 165.
23. Kwon, C. W.; Cheon, S. E.; Song, J. M.; Kim, H. T.; Shin, C. B.; Kim, S. W. J Power Source 2001, 93, 145.
24. Kuk, S. T.; Song, Y. S.; Kim, K. J Power Source 1999, 83, 50.
25. Chen, C. H.; Kelder, E. M.; Jak, M. J. G.; Schoonman, J. Solid State Ionics, 1996, 86, 1301.
26. Chang, C. C.; Scarr, N.; Kumta, P. N. Solid State Ionics 1998, 112, 329.
27. Hyung, S. K.; Byung, W. C.; Jung, T. K.; Kyung, S. Y.; Hai, S. C. J Power Sources 1996, 62, 21.
28. Chen, C. H.; Buysman, A. A. J.; Kelder, E. M.; Schoonman, J. Solid State Ionics 1995, 80, 1.
29. Ma, Z. F.; Yang, X. Q.; Liao, X. Z. Sun, X.; McBreen, J. Electrochemistry Communication 2001, 3, 425.
30. Nieto-Ramos, S.; Tomar, M. S.; Hemandez, S.; Aliev, F. Thin Solid Films 2000, 377/378, 745.
31. Arai, H.; Okada, S.; Sakurai, Y.; Yamaki, J. Solid State Ionics 1997, 95, 275.
32. Zhong, Q.; von Sacken, U. J Power Sources 1995, 54, 221.
33. Ying, J.; Wan, C.; Jiang, C. J Power Sources 2001, 102, 162.
34. Antolini, E.; Giorgi, L. Ceramics International 1998, 24, 117.
35. Arai, H.; Okada, S.; Ohtsuka, H.; Ichimura, M.; Yamaki, J. Solid State Ionics 1995, 80, 261.
36. Nishimura, K.; Douzono, T.; Kasai, M.; Andou, H.; Muranaka, Y.; Kozono, Y. J Power Sources 1999, 81, 420.
37. Yamane, H.; Inoue, T.; Fujita, M.; Sano, M. J Power Sources 2001, 99, 60.
38. Frysz, C. A. Fuel & Energy Abstracts 1996, 37, 430.
39. Yamaki, J.; Ohtsuka, H.; Shodai, T. Solid State Ionics 1996, 86, 1279.
40. Kosova, N. V.; Uvarov, N. F.; Devyatkina, E. T.; Avvakumov, E. G. Solid State Ionics 2000, 135, 107.
41. Frysz, C. A.; Xiaoping, S.; Chung, D. D. L. J Power Sources 1996, 58, 41.
42. Hwang, K. H.; Lee, S. H.; Joo, S. K. J Power Sources 1995, 54, 224.
43. Komaba, S.; Kumagai, N.; Chiba, S. Electrochim. Acta 2000, 46, 31.
44. Shiraishi, Y.; Nakai, I.; Tsubata, T.; Himeda, T.; Nishikawa, J Power Sources F. 1999, 81/82, 571.
45. M. Watanabe and N.Ogata, “Polymer Electrolyte Review-1”, Edited by J. R. MacCallum and C. A. Vincent, Elsevier Applied Science Publisher Ltd., London, 1987.
46. Gray, F. M.; Fiona, M. In Solid Polymer Electrolytes: Fundamental and Technological Applications; Gray, F. M., Ed.; VCH: New York, 1991.
47. Muller-Plathe, F.; Van Gunsteren, W. F. J Chem Phys 1995, 103, 4745.
48. Fenton, D. E.; Parke, J. M.; Wright, P. V. polymer 1973, 14, 589.
49. Wright, P. V. Brit Polym J 1975, 7, 319.
50. Armand, M. B.; Chabagno, J. M.; Duclot, M. In Second International Meeting on Solid Electrolytes, Extended Abstract; St. Andrew: Scotland, 1978; p 20.
51. Armand, M. B.; Chabagno, J. M.; Duclot, M. In Poly-ethers as Solid Electrolytes: in Fast Ion Transport in Solid; Vashista, P.; Mundy, J. N.; Shenoy, G. K., Eds.; Elsevier: North-Holland, Amsterdam, Netherlands, 1979.
52. Chen, H. W.; Chang, F. C. Polymer 2001, 42, 9763.
53. Watanabe, M.; Kanba, M.; Tsunemi, K. Makromol Chem-Rapid Commun 1981, 2, 741.
54. Watanabe, M.; Kanba, M.; Shinohara, I. J Appl Electrochem 1982, 27, 4191.
55. Watanabe, M.; Kanba, M.; Shinohara, I. J Polym Sci Polym Phys 1983, 21, 939.
56. Abraham, K. M.; Alamgir, M. J Electrochem Soc 1990, 137, 1657.
57. Croce, F.; Gerace, F.; Scrosati, B. Electrochim Acta 1994, 39, 2187.
58. Chen, H. W.; Chang, F. C. J Polym Sci Part B 2001, 39, 2407.
59. Rajendran, S.; Uma, T. Mater Letters 2000, 44, 242.
60. Rajendran, S.; Kannan, R.; Mahendran, O. Mater Letters 2001, 49, 172.
61. Stephan, A. M.; Renganathan, N. G.; Kumar, T. P.; Thirunakaran, R.; Pitchumani; Shrisudersan, J.; Muniyandi, N. Solid State Ionics 2000, 130, 123.
62. Feuillade, G.; Perche, P. h. J Appl Electrochem 1975, 5, 63.
63. Bohnke, O.; Frand, G.; Rezrazi, M.; Rousselot, C.; Truche, C. Solid State Ionics 1993, 55, 105.
64. Appetecchi, G. B.; Crose, F.; Scrosati, B. Electrochim Acta 1995, 40, 991.
65. Alamgir, M.; Abraham, K. M. J Electrochem Soc 1993, 140, 96.
66. Pistoia, G.; Antonini, A.; Wang, G. J Power Sources 1996, 58, 139.
67. Sung, H. Y.; Wang, Y. Y.; Wan, C. C. J Electrochem Soc 1998, 145, 1207.
68. Tsuchida, E.; Ohno, H.; Tsunemi, K. Electrochim Acta 1983, 28, 591.
69. Jiang, Z.; Carroll, B.; Abraham, K. M. Electrochim Acta 1997, 42, 2667.
70. Mustarelli, P.; Quartarone, E.; Magistris, A. Solid State Ionics 1999, 122, 285.
71. Michot, T.; Nishimoto, A.; Watanabe, M. Electrochim Acta 2000, 45, 1347.
72. Berthier, C.; Gorecki, W.; Armand, B. Solid State Ionics 1983, 11, 91.
73. Killis, A.; Cheradame, H.; Gandini, A.; Lenest, J. F. Macromolecules 1984, 17, 63.
74. Killis, A.; Cheradame, H.; Cohenaddad, J. P.; Gandini, A.; Lenest, J. F. Solid State Ionics 1984, 14, 231.
75. Hall, P. G.; Bannister, D. J.; Davies, G. R.; Lebrocq, K. M. F.; Mcintyre, J. E.; Ward, I. M. Polymer Commu 1986, 27, 98.
76. Vallee, A.; Besner, S.; Prudhomme, J. Electrochim Acta 1992, 37, 1579.
77. Watanabe, M.; Yamada, S.; Sanui, K.; Ogata, N. J Chem Soc: Chem Commu 1993, 11, 929.
78. Boudin, F.; Andrieu, X.; Jehoulet, C.; Olsen, II. J Power Sources 1999, 82,804.
79. Wang, L.; Yang, B.; Wang, X. L.; Tang, X. Z. J Appl Polym Sci 1999, 71, 1711
80. Ohno, H.; Tsuchida, E.; J Macromol Sci Chem A 1989, 26, 551.
81. Shriver, D. F. Macromolecules 1988, 21, 299.
82. Shengshui, Z.; Leiling, Y.; Qingguo, L. Solid State Ionics 1995, 76, 2241.
83. Bannister, D. J.; Davies, G. R.; Ward, I. M.; McIntyre, J. E. Polymer 1984, 25, 1291.
84. Hang, S. S.; Deng, Z. H.; Wan G. X.; J Macro Pure Appl Sci Chem A 1992, 29, 77.
85. Liu, H.; Okamoto, Y.; Skotheim, T.; Pak, Y. S.; Greenbaum, S. G.; Adamic, K. T. Solid State Ionics 1989, 337.
86. Rietmae, E. A.; Kaplan, M. L. J Polym Sci Part C 1990, 28, 187.
87. Fontanella, J. J.; Wintergill, M. C.; Calame, J. P.; Smith, M. K.; Andeen, C. G. Solid State Ionics 1986, 18/19, 255.
88. Prosini, P. P.; Mancini, R.; Petrucci, L.; Contini, V.; Villano, P. Solid State Ionics 2001, 144, 185.
89. Appetecchi, G. B.; Croce, F.; Marassi, R.; Persi, L.; Romagnoli, P.; Scrosati, B. Electrochim Acta 1999, 45, 23.
90. Kim, D. W.; S, Y. K. J Power Sources 2001, 102, 41.
91. Shi, Q.; Yu, M.; Zhou, X.; Yan, Y.; Wan, C. J Power Sources 2002, 103, 286.
92. Freni, S.; Maggio, G.; Passalacqua, E. Mater Chem and Phys 1997, 48, 199.
93. Chu, P. P.; He, Z. P. Polymer 2001, 42, 4743.
94. Kim, H. T.; Kim, K. B.; Kim, S. W.; Park, J. K. Electrochim Acta 2000, 45, 4001.
95. Song, J. Y.; Wang, Y. Y.; Wan, C. C. J Power Sources 1999, 77, 183.
96. Labrèche, C.; Lévesque, I.; Prud''homme, J. Macromolecules 1996, 29, 795.
97. Rajendran, S.; Uma, T. Mater Letters 2000, 44, 242.
98. Rajendran, S.; Kannan, R.; Mahendran, O. Mater Letters 2001, 49, 172.
99. Gibbs, J. H.; Marzio, E. A. J Chem Phys 1958, 28, 373.
100. Watanabe, M.; Suzuki, A.; Ogata, N. Macromolecules 1986, 19, 1921.
101. Watanabe, M.; Ogata, N. Macromolecules 1987, 20, 569.
102. Le Nest, J. F.; Cheradame, H.; Candini, A. Solid State Ionics 1988, 28/30, 1032.
103. Wang, Y.; Herron, N. Science 1996, 273, 632.
104. Hanse, N.; Leffers, T.; Lilholt, H., “Inter. Sympos. On Metal. And Mater. Sci.”,Rskidle, Denmark, p15, 1981.
105. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J Mater Res 1993, 8, 1179.
106. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J Appl Polym Sci 1993, 49, 1259.
107. Kato, C.; Kuroda, K.; Takahara, H. Clays and Clay Minerals 1981, 29, 294.
108. Lee, D. C.; Jang, J. W. J Appl Polym Sci 1996, 61, 1117.
109. Moet, A.; Akelah, A. Mater Lett 1993, 18, 97.
110. Moet, A.; Akelah, A. Mater Lett 1995, 22, 97.
111. Bhattacharya, J.; Saha, S. K. J Polym Sci Polym Chem 1990, 28, 2249.
112. Vaia, R.; Ishii, H.; Giannelis, E. Chem Mater 1993, 5, 1694.
113. Vaia, R.; Jandt, K.; Kramer, E.; Giannelis, E. Chem Mater 1996, 8, 2628.
114. Pinnavaia, T. J. Chem Mater 1996, 8, 1584.
115. Talapatra, S.; Saha, S. K.; Chakravarti, S. K.; Guhaniyogi, S. C. Polym Bull 1983, 10, 21.
116. Talapatra, S.; Chakravarti, S. K.; Guhaniyogi, S. C. J Macromol Sci Chem 1985, 22, 1611.
117. Bhattacharya, J.; Talapatra, S.; Saha, S. K. J Appl Polym Sci 1990, 39, 2237.
118. Oehring, M.; Appel, F. Appl Phys Lett 1995, 66, 941.
1. Scrosati, B. In Polymer electrolyte reviews; MacCallum, J. R.; Vincent, C. A., Eds.; Elsevier Applied science: New York, 1989; p 315.
2. Scrosati, B. In Applications of Electroactive polymers; Scrosati, B., Ed.; Champan & Hall: New York, 1993; p 251.
3. Armand, M. B. Solid State Ionics 1983, 9/10, 745.
4. Chao, S.; Wrighton, M. S. J Am Chem Soc 1987, 109, 2197.
5. Fenton, D. E.; Parker, J. M.; Wright, P.V. Polymer 1973, 7, 319.
6. Ratner, M. A.; Shriver, D. F. Chem Rev 1988, 88, 109.
7. Wang, L.; Yang, B.; Wang, X. L.; Tang, X. Z. J Appl Polym Sci 1999, 71, 1711.
8. Wang, X. L.; Li, H.; Tang, X. Z.; Chang, F. C. J Polym Sci Park B: Polym Phys 1999, 37, 837.
9. Wieczorek, W.; Raducha, D.; Zalewska, A.; Stevens, J. R. J Phys Chem B 1998, 102, 8725.
10. Abraham, K. M.; Jiang, Z.; Carroll, B.; Chem Mater 1997, 9, 1978.
11. Yang, X. Q.; Hanson, L.; McBreen, J.; Okamoto, Y. J Power Source 1995, 54, 198.
12. Lee, J. C.; Litt, M. H. Macromolecules 2000, 33, 1618.
13. Labreche, C.; Levesque, I.; Prud’homme, J. Macromolecules 1996, 29, 7795.
14. Mishra, R.; Rao, K. J. Solid State Ionics 1998, 106, 113.
15. Scanlon, L. G.; Giannelis, E. P. Adv Mater 1995, 7, 154.
16. Ogata, N.; Kawakage, S.; Ogihara, T. Polymer 1997, 38, 5115.
17. Kumar, B.; Scanlon, L. G. Solid State Ionics 1999, 124, 239.
18. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature 1998, 394, 456.
19. Kloster, G. M.; Thomas, J. A.; Brazis, P. W.; Kannewurf, C. R.; Shriver, D. F. Chem Mater 1996, 8, 2418.
20. Wieczorek, W.; Florjanczyk, Z.; Stevens, J. R. Electrochim Acta 1995, 40, 2251.
21. Wieczorek, W.; Such, K.; Chung, S. H.; Stevens, J. R. J Phys Chem 1994, 98, 9047.
22. Ogata, N.; Kawakage, S.; Ogihara, T. Polymer 1997, 38, 5115.
23. Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Scanlon, L. G.; Giannelis, E. P. Adv Mater 1995, 7, 154.
24. Jeevanandam, P.; Vasudevan, S. Chem Mater 1998, 10, 1276.
25. Wong, S.; Zax, D. B. Electrochim Acta 1997, 42, 3513.
26. Wieczorek, W.; Zalewska, A.; Raducha, D.; Florjanczyk, Z.; Stevens, J. R. J Phys Chem B 1996, 29, 143.
27. Wieczorek, W.; Zalewska, A.; Raducham, D.; Florjanczyk, Z.; Stevens, J. R. J Phys Chem B 1998, 10, 352.
28. Huang, W.; Frech, R.; Wheeler, R. A. J Phys Chem 1994, 98, 100.
29. Ferry, A.; Edman, L.; Forsyth, M.; MacFarlane, D. R.; Sun, J. J. Appl Phys 1999, 86, 2346.
30. Ferry, A. J Phys Chem B 1997, 101, 150.
31. Huang, W.; Frech, R. Polymer 1994, 35, 235.
32. Jin, J. H.; Hong, S. U.; Won, J.; Kang, Y. S. Macromolecules 2000, 33, 4932.
33. 宋金穎,博士論文,國立清華大學化學工程研究所,民國八十九年。
1. Scrosati, B. In Polymer Electrolyte Reviews; MacCallum, J. R.; Vincent, C. A., Eds.; Elsevier Applies Science:New York, 1989; p 315.
2. Scrosati, B. In Applications of Electroactive Polymers; Scrosati, B., Ed.; Champan & Hall: New York, 1993. p 251.
3. Armand, M. B. Solid State Ionics 1983, 9/10, 745.
4. Chao, S.; Wrighton, M. S. J Am Chem Soc 1987, 109, 2197.
5. Fenton, D. E.; Parker, J.M.; Wright, P. V. Polymer 1973, 7, 319.
6. Ratner, M. A.; Shriver, D. F. Chem Rev 1988, 88, 109.
7. Wang, Li.; Yang, B.; Wang, X. L.; Tang, X. Z. J Appl Polym Sci 1999, 71, 1711.
8. Wang, X. L.; Li, H.; Tang, X. Z.; Chang, F. C. J Polym Sci B: Polym Phys 1999, 37, 837.
9. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R.; J Phys Chem B 1999, 103, 10632.
10. Kumar, B.; Scanlon, L. G. Solid State Ionics 1999, 124, 239.
11. Ponomareva, V. G.; Lavrova, G. V.; Simonova, L. G. Solid State Ionics 1999, 119, 295.
12. Best, A. S.; Ferry, A.; MacFarlane, D. R.; Forsyth, M. Solid State Ionics 1999, 126, 269.
13. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature 1998, 394, 456.
14. Wieczorek, W.; Raducha, D.; Zalewska, A.; Stevens, J. R. J Phys Chem B 1998, 102, 8725.
15. Kloster, G. M.; Thomas, J. A.; Brazis, P. W.; Kannewurf, C. R.; Shriver, D. F. Chem Mater 1996, 8, 2418.
16. Wieczorek, W.; Florjanczyk, Z.; Stevens, J. R. Electrochim Acta 1995, 40, 2251.
17. Wieczorek, W.; Such, K.; Chung, S. H.; Stevens, J. R. J Phys Chem 1994, 98, 9047.
18. Ogata, N.; Kawakage, S.; Ogihara, T. Polymer 1997, 38, 5115.
19. Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Scanlon, L. G.; Giannelis, E. P. Adv Mater 1995, 7, 154.
20. Jeevanandam, P.; Vasudevan, S. Chem Mater 1998, 10, 1276.
21. Wong, S.; Zax, D. B. Electrochim Acta 1997, 42, 3513.
22. Ferry, A.; Edman, L.; Forsyth, M.; MacFarlane, D. R.; Sun, J. Electrochim Acta 2000, 45, 1237.
23. Wang, Z.; Huang, B.; Xue, R.; Huang, X.; Chen, L. Solid State Ionics 1999, 121, 141.
24. Huang, B.; Wang, Z.; Chen, L.; Xue, R.; Wang, F. Solid State Ionics 1996, 91, 279.
25. Wang, Z.; Huang, B.; Huang, H.; Xue, R.; Chen, L.; Wang, F. Spectrochimica Acta Part A 1996, 52, 691.
26. Huang, B.; Wang, Z.; Li, G.; Huang, H.; Xue, R.; Chen, L.; Wang, F. Solid State Ionics 1996, 85, 79.
27. Ferry, A.; Edman, L.; Forsyth, M.; MacFarlane, D. R.; Sun, J. J Appl Phys 1999, 86, 2346.
28. Ferry, A. J Phys Chem B 1997, 101, 150.
29. Huang, W.; Frech, R. Polymer 1994, 35, 235.
30. Huang, W.; Frech, R.; Wheeler, R. A. J Phys Chem 1994, 98, 100.
31. Frech, R.; Chintapalli, S.; Bruce, P. G.; Vincent, C. A. Chem Commun 1997, 157.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top