跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭紹偉
研究生(外文):Kuo Shiao Wei
論文名稱:高分子間氫鍵作用力的基礎研究與應用
論文名稱(外文):Fundmental research and application in hydrogen bonded polymer interaction
指導教授:張豐志
指導教授(外文):Chang Feng Chih
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:292
中文關鍵詞:氫鍵高分子聚摻高玻璃轉移溫度相溶性聚摻紅外線光譜固態核磁共振Painter-Coleman交互作用模型
外文關鍵詞:Hydrogen bondingpolymer blendhigh glass transition temperaturemiscible blendFTIRsolid state NMRPainter-Coleman association model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:525
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在高分子的相關學科中,高分子摻合物的性質研究一直是一個相當重要的領域。而在有關高分子摻合的研究中,特殊相互作用(氫鍵、離子-離子相互作用等)和相溶性問題一直是一個相當有趣的課題。透過引入特殊作用,使不相溶體系轉化為相溶體系,是這二十年來高分子摻合物研究最豐富的成果方向之一。而在高分子間氫鍵作用力的聚摻研究中,Painter-Coleman association model (PCAM)是最能描述其交互作用力及熱力學性質的理論。因此在本研究中,我們將選用不同高分子氫鍵的施予體(donor)及受體(acceptor)進行摻合研究,利用PCAM探討高分子間氫鍵作用力的熱力學性質,並使用霍立葉紅外線光譜儀及固態核磁共振偵測聚摻合物中氫鍵的交互作用及分子運動行為。而本論文共分為5個部份:
(1) 利用微分掃瞄卡計及紅外線光譜判斷高分子氫鍵施予體的酚醛樹脂,聚乙烯酚及苯氧基樹脂與聚己內酯之間的氫鍵作用力大小,並利用PCAM模型預測。
(2) 選用poly(2-vinylpyridine)及poly(4-vinylpyridine)與酚醛樹脂聚摻,並利用微分微分掃瞄卡計及紅外線光譜及PCAM模型分析比較立體障礙對於高分子間氫鍵作用力的影響。
(3) 對於兩個原本不相溶的高分子,分別引入高分子氫鍵的施予體或受體於主鏈上,與另一高分子氫鍵受體或施予體聚摻,並利用PCAM模型的預測與實驗的結果作一比較。
(4) 選用三個不同官能基的高分子聚摻,利用PCAM模型預測其交互作用力及相行為。
(5) 高分子間氫鍵作用力的應用,著重於高分子玻璃轉移溫度的提升。我們將比較利用高分子聚摻及作成共聚物之間的玻璃轉移溫度的差別。
The miscibility and specific interaction in polymer blends have been a topic of intense interest in polymer science due to the their potential applications. The miscibility of an immiscible blend enhanced by introducing a functional to one component capabling of forming hydrogen bonding with another component is the one of the major achievements during these twenty years in polymer blend. This type of interaction has been widely described in terms of association model by Painter and Coleman due to exactly prediction in most systems. Therefore, in this study, we will choose different hydrogen bonded donor or acceptor polymers to blend with another polymer and study the interaction and molecular mobility behavior by using Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance spectroscopy. The experiment work in this dissertation was divided into five areas:
(1) The hydrogen bonding strength of poly(ε-caprolactone) (PCL) blends with three different well-known hydrogen bonding donor polymers [i.e., Phenolic, poly(vinyl-phenol) and phenoxy] were investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy and prediction by PCAM.
(2) The effect of steric hindrance on hydrogen bonding and miscibility behaviors between poly(2-vinylpyridine) (P2VP) or poly(4-vinylpyridine) (P4VP) with phenolic resin were investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy and prediction by PCAM.
(3) Studying of the immiscible polymer binary blend is capabling of hydrogen bonding donor or acceptor functional on the polymer chain to blend with another polymer and using the PCAM prediction to compare with experimental result.
(4) We choose three different functional group of polymer to blend each other and using the PCAM to predict the phase behavior.
(5) The application in hydrogen bonded polymer interaction, especially in glass transition temperature increase. We will compare the glass transition temperature behavior difference between polymer blends and their corresponding copolymers.
Outline of Contents
Pages
Acknowledgments
Outline of Contents Ⅰ
List of Tables Ⅸ
List of Figures Ⅹ
Abstract (in Chinese) 1
Abstract (in English) 2
Chapter 1 Introduction
1-1 The Nature of Hydrogen Bonding 3
1-2 Experimental Characterization of Hydrogen Bonds 6
1-3 Thermodynamic Properties in Polymer Blend 9
1-4 Reference Review 12
1-5 Study Motivation and Overview of Experimental Results 22
References 26
Chapter 2 Introduction to Painter-Coleman Association Model
2-1 The Association Model Approach 32
2-2 Entropy of Blend 35
2-3 Free Energy of Polymer Blend 36
2-4 Summarizes of Theoretical Results 39
2-5 The Measurement of Hydrogen Bonding Parameters Using Infrared Spectroscopy 40
References 47
Chapter 3 The Study of Hydrogen Bonding Strength in the Poly(ε-caprolactone)
Abstract 57
3-1 Introduction 58
3-2 Experimental
3-2-1 Materials 60
3-2-2 Blend Preparations 60
3-2-3 Characterizations 61
3-3 Results and Discussion
3-3-1 Glass Transition Temperature Analyses 62
3-3-2 Analyses of Melting Temperature Depression 63
3-3-3 FTIR Analyses 65
3-3-4 Painter-Coleman Association Model Analyses 67
3-4 Conclusions 70
References 71
Chapter 4 The Study of Hydrogen Bonding and Miscibility in Poly(vinylpyridines) with Phenolic Resin
Abstract 91
4-1 Introduction 92
4-2 Experimental
4-2-1 Materials 93
4-2-2 Blend Preparations 93
4-2-3 Characterizations 94
4-3 Results and Discussion
4-3-1 Thermal Analyses 95
4-3-2 FTIR Analyses 95
4-3-3 FTIR Analyses at Various Temperatures 97
4-3-4 Estimation of Inter-Association Equilibrium Constant (KA) Based on PCAM 98
4-4 Conclusions 100
References 101
Chapter 5 Effect of Copolymer Composition on the Miscibility of Poly(styrene-co-vinylphenol) with Phenolic Resin
Abstract 110
5-1 Introduction 111
5-2 Experimental 112
5-3 Results and Discussion
5-3-1 Thermal Analyses of Phenolic/PAS Blend 113
5-3-2 FTIR Analyses of Phenolic/PAS Blend 113
5-3-3 Estimation of KA of Phenolic/PAS Blend 115
5-3-4 Prediction of Degree of Hydrogen Bonding of Phenolic/PAS 117
5-3-5 Prediction of Free Energy of Phenolic/PAS Blend 117
5-3-6 Phase Separation of Phenolic/PAS Blend 118
5-3-7 Heat of Demixing of Phenolic/PAS Blend 118
5-3-8 Evidence of Phase Separation via FTIR Analyses of Phenolic/PAS 119
5-3-9 Copolymer Analyses 120
5-3-10 Thermal Analyses of Phenolic/PS-co-PAS 121
5-3-11 FTIR Analyses of Phenolic/PS-co-PAS 121
5-3-12 Painter-Coleman Association Model Analyses 123
5-4 Conclusions 124
References 125
Chapter 6 Effect of Copolymer Composition and Free Volume Change on the Miscibility of Poly(styrene-co-vinylphenol) with Poly(ε-caprolactone)
Abstract 145
6-1 Introduction 146
6-2 Experimental 147
6-3 Results and Discussion
6-3-1 Copolymer Analyses 149
6-3-2 Thermal Analyses 149
6-3-3 FTIR Analyses 150
6-3-4 PCAM and Binary Interaction Model Analyses 151
6-3-5 Kovacs’ Free Volume Theory Analyses 153
6-4 Conclusions 156
References 157
Chapter 7 Effect of Inert Diluent Segment on the Miscibility of poly(vinylphenol) with PAS Blend
Abstract 166
7-1 Introduction 167
7-2 Experimental 170
7-3 Results and Discussion
7-3-1 PVPh/PAS Blend Analyses 171
7-3-2 PSOH/PAS Blend Analyses 173
7-3-3 Estimation of Inter-Association Equilibrium Constant (KA) 174
7-4 Conclusions 177
References 178
Chapter 8 Miscibility and Hydrogen Bonding in Blends of Poly(vinylphenol-co-methyl methacrylate) with Poly(ethylene oxide)
Abstract 187
8-1 Introduction 188
8-2 Experimental 189
8-3 Results and Discussion
8-3-1 Thermal Analyses 190
8-3-2 Equilibrium Melting Temperature Depression Analyses 190
8-3-3 FTIR Analyses 191
8-3-4 Solid State NMR Analyses 193
8-3-5 Proton Spin Lattice Relaxation Time in the Rotating Frame 194
8-3-6 Stoichiometric Equations by PCAM 197
8-3-7 FTIR Analyses at Various Temperatures 198
8-4 Conclusions 200
References 201
Chapter 9 Phase Behavior and Hydrogen Bonding in Ternary Polymer Blends of Phenolic Resin/Poly(ethylene oxide)/Poly(ε-caprolactone)
Abstract 216
9-1 Introduction 217
9-2 Experimental 220
9-3 Results and discussion 221
9-4 Conclusions 230
References 231
Chapter 10 Significant Glass Transition Temperature Increase through Hydrogen Bonded Polymer
Abstract 249
10-1 Introduction 250
10-2 Experimental 251
10-3 Results and Discussion
10-3-1 Thermal Analyses of PVPh/PVP Blend 253
10-3-2 FTIR Analyses of PVPh/PVP Blend 253
10-3-3 Solid State NMR Analyses of PVPh/PVP Blend 254
10-3-4 PCAM Analyses of PVPh/PVP Blend 255
10-3-5 PAS-co-PVP Copolymer Analyses 256
10-3-6 PVPh-co-PVP Copolymer Analyses 259
10-3-7 Significant Glass Transition Temperature Increase Analyses 260
10-4 Conclusions 263
References 264
Chapter 11 Conclusions and Future Outlook 282
List of Publications 284
Introduction to Author 291
Reference:
1. Errera, J.; Mollet, P., Nature 1936, 138, 882.
2. Schwager, F.; Marand, E.; Davis, R. M., J. Phys. Chem. 1996, 100, 19268.
3. Van Ness, H. C.; Winkle, J. V.; Richtol, H. H.; Hollinger, H. B., J. Phys. Chem. 1967, 71, 1483.
4. Johari, G. P.; Dannhauser, W., J. Phys. Chem. 1968, 72, 3273.
5. Dannhauser, W., J. Chem. Phys. 1968, 48, 1991.
6. Musa, R. S.; Eisner, M., J. Chem. Phys. 1959, 30 227.
7. Pauling, L.; Corey, R. B.; Branson, H. R., Proc. Nat. Acad. Sci. 1951, 37, 205.
8. Pauling, L.; Corey, R. B., Proc. Nat. Acad. Sci. 1951, 37, 729.
9. Watson, J. P.; Crick, F. H., Nature 1953, 171, 737; 964.
10. Pauling, L., The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca, New York, 1960.
11. Londe, O.; Teixerira, J., J. Phys. 1983, 44, 525.
12. Pimentel, G. C.; McClellan, A. L., “The Hydrogen Bond” W. H. Freeman and Co., San Francisco and London 1960.
13. Flory, P. J., Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.
14. Coleman, M. M.; Graf, J. F.; Painter, P. C. “Specific Interactions and the Miscibility of Polymer Blends. Technomic Publishing”, Lancaster, PA, 1991.
15. Flory, P. J., J. Chem. Phys. 1941, 9,660.
16. Huggins, M. L., J. Chem. Phys. 1941, 9,440.
17. Sanchex, I. C.; Stone, M. T., “Polymer Blends” Paul, D. R., Bucknall, C. B., Eds.; Wiley; New York, 2000.
18. Paul, D. R.; Merfeld, G. D., “Polymer Blends” Paul, D. R., Bucknall, C. B., Eds.; Wiley; New York, 2000.
19. Coleman, M. M.; Zarian, J., Journal of Polymer Science: Polymer Physics Edition 1979, 17, 837.
20. Coleman, M. M.; Moskala, E. J., Polymer 1983, 24, 251.
21. Moskala, E. J.; Varnell, D. F.; Coleman, M. M., Polymer 1985, 26, 228.
22. Natansohn, A., Journal of Polymer Science: Polymer Letter Edition 1985, 23, 305.
23. Uriarte, C.; Eguiazabal, J. I.; Llanos, M.; Iribarren, J. I.; Iruin, J. J., Macromolecules 1987, 20, 3038.
24. Cesteros, L. C.; Isasi, J. R.; Katime, I., Macromolecules 1994, 27, 7887.
25. Howe, S. E.; Coleman, M. M., Macromolecules 1986, 19, 72.
26. Vivas, M.; Frechet, J. M. J., Polymer 1988, 29, 477.
27. Xu, Z.; Kramer, E. J.; Edgecombe, B. D.; Frechet, J. M. J., Macromolecules 1997, 30, 7958.
28. Lin, A. A.; Kwei, T. K.; Reiser, A., Macromolecules 1989, 22, 4112.
29. Jo, W. H.; Lee, S. C., Macromolecules 1990, 23, 2261.
30. Jo, W. H.; Kwon, Y. K.; Kwon, I. H., Macromolecules 1991, 24, 4708.
31. Hong, B. K.; Kim, J. Y.; Jo, W. H.; Lee, S. C., Polymer 1997, 38, 4373.
32. Serman, C. J.; Painter, P. C.; Coleman, M. M., Polymer 1991, 32, 1049.
33. Zhang, X.; Takegoshi, K.; Hikichi, K., Macromolecules 1991, 24, 5756.
34. Li, D.; Brisson, J., Macromolecules 1996, 29, 868.
35. Dong, J.; Ozaki, Y., Macromolecules 1997, 30, 286.
36. Zhang, H.; Bhagwagar, D. E.; Graf, J. F.; Painter, P. C.; Coleman, M. M., Polymer 1994, 35, 5379.
37. Menestrel, C. L.; Bhagwagar, D. E.; Painter, P. C.; Graf, J. F., Macromolecules 1992, 25, 7101.
38. Coggesthall, N. D.; Saier, E. L. J. Am. Chem. Soc. 1951, 71, 5414.
39. Pomposo, J. A.; Cortazar, M.; Calahorra, E., Macromolecules 1994, 27, 245.
40. Pomposo, J. A.; Cortazar, M.; Calahorra, E., Macromolecules 1994, 27, 252.
41. Wang, L. F.; Pearce, E. M.; Kwei, T. K., Journal of Polymer Science: Polymer Physics Edition 1991, 29, 619.
42. Jiang, M.; Li, M.; Xiang, M.; Zhou, H., Adv. Polym. Sci. 1999, 146, 121.
43. High, M. S.; Painter, P. C.; Coleman, M. M., Macromolecules 1992, 25, 797.
44. Xu, Y.; Painter, P. C.; Coleman, M. M., Polymer 1993, 34, 3010.
45. Isasi, J. R.; Cesteros, L. C.; Katime, I., Macromolecules 1994, 27, 2200.
46. Coleman, M. M.; Xu, Y.; Painter, P. C., Macromolecules 1994, 27, 127.
47. Painter, P. C.; Veytsman, B.; Kumar, S.; Shenoy, S.; Graf, J. F.; Xu, Y.; Coleman, M. M. Macromolecules 1997, 30, 932.
48. Coleman, M. M.; Pehlert, G. J.; Painter, P. C. Macromolecules 1996, 29, 6820.
49. Pehlert, G. J.; Painter, P. C.; Veytsman, B.; Coleman, M. M. Macromolecules 1997, 30, 3671.
50. Pehlert, G. J.; Painter, P. C.; Coleman, M. M. Macromolecules 1998, 31, 8423.
51. Coleman, M. M.; Guigley, K. S.; Painter, P. C. Macromol. Chem. Phys. 1999, 200, 1167.
52. Painter, P. C.; Coleman, M. M., “Polymer Blends” Paul, D. R., Bucknall, C. B., Eds.; Wiley; New York, 2000.
53. Pruthtikul, R.; Coleman, M. M.; Paitner, P. C.; Tan, N. B., Macromolecules 2001, 34, 4145.
54. Painter, P. C.; Pehlert, G. J.; Hu, Y.; Coleman, M. M., Macromolecules 1999, 32, 2055.
55. Hu, Y.; Motzer, H. R.; Exeberria, A. M.; Fernandex-Berrdi, M. J.; Iruin, J. J.; Painter, P. C.; Coleman, M. M., Macromol. Chem. Phys. 2000, 201, 705.
56. Hill, D. J. T.; Whittaker, A. K.; Wong, K. W., Macromolecules 1999, 32, 5285.
57. Miyoshi, T.; Takegoshi, K.; Terao, T., Macromolecules 1999, 32, 8914.
58. Wang, J.; Cheung, M. K.; Mi, Y., Polymer 2001, 42, 2077.
59. Wang, J.; Cheung, M. K.; Mi, Y., Polymer 2001, 42, 3087.
60. Pedrosa, P.; Pomposo, J. A.; Calahorra, E.; Cortazar, M., Macromolecules 1994, 27, 102.
61. Iriarte, M.; Alberdi, M.; Shenoy, S. L.; Iruin, J. J., Macromolecules 1999, 32, 2661.
62. Wu, H. D.; Chu, P. P.; Ma, C. C. M.; Chang, F. C., Macromolecules 1999, 32, 3097.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top