跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃敬德
論文名稱:直交表實驗計劃法最適化超臨界流體萃取與固相微萃取分析可疑火場殘跡樣品
論文名稱(外文):Optimization of supercritical fluid extraction and soild-phase microextraction by orthogonal array experimental designs for the analysis of suspected fire debris
指導教授:謝有容謝有容引用關係
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:135
中文關鍵詞:直交表實驗計劃法超臨界流體萃取法固相微萃取法火場殘跡
外文關鍵詞:Orthogonal Array Experimental DesignSupercritical Fluid ExtractionSolid-phase MicroextractionFire Debris
相關次數:
  • 被引用被引用:4
  • 點閱點閱:457
  • 評分評分:
  • 下載下載:143
  • 收藏至我的研究室書目清單書目收藏:1
尋找足可取代現行縱火殘跡樣品前處理方法的新技術是本論文的研究目標,而超臨界流體萃取法及頂空固相微萃取法由於皆有將分析物聚集濃縮的優點,故被選擇作為研究的標的。在超臨界流體萃取的研究中,以一般容易取得之95無鉛汽油、煤油及高級柴油為對象分析物,而於頂空固相微萃取技術的研發上,則再加上去漬油共四種石油系蒸餾物做為萃取的對象。
超臨界流體萃取三種縱火加速劑的研究中,根據對實驗之了解,認為流體的密度、溫度、流速、動態萃取時間與靜態萃取時間應會造成其萃取效率的差異,採用L16(215)直交表實驗計劃法,配合平均回應值之計算與變異數分析之輔助得知對萃取效率有顯著影響之因子,亦獲得初步之較佳萃取條件,該條件並被用來對實際縱火殘跡樣品進行萃取分析,且成功地自樣品中回收微量之縱火加速劑成份。L16(215)直交表實驗計劃法進行之目的在藉由拉大因子的水準間距,了解該實驗因子對實驗結果是否具有顯著影響,而最適化的實驗條件有賴於合理的細分水準間距,因此接著將L16(215)直交表實驗之變異數分析結果中百分比貢獻度大於5%之實驗因子細分成四水準,以L16(45)直交表實驗計劃法,尋找顯著影響因子最適化之萃取條件,最適化的萃取條件經過矽藻土基質樣品與模擬縱火基質樣品之萃取實驗後,從而確認其高萃取回收率及高再現性。
固相微萃取分析四種縱火加速劑的實驗裡,影響因子雖較單純,但吸附纖維的種類、樣品預熱時間、吸附的溫度及吸附的時間等因素亦該於調整實驗條件時列入考量,利用L8(27)及L16(45)直交表實驗計劃法對四種縱火加速劑進行最適化萃取條件的開發,這些研究獲得之最適化萃取條件亦經不同樣品類別之重複分析後確認其再現性,同時在進行過比較實驗後更肯定其萃取效果優於傳統對縱火殘跡樣品預測試之頂空分析法。
本論文的研究結果顯示,直交表實驗計劃法不但節省時間成本與經濟成本,且可系統有效地探尋獲得最佳化的萃取條件,同時無論是超臨界流體萃取亦或頂空固相微萃取之最佳萃取條件,皆證實可將矽藻土中所添加的縱火加速劑或模擬縱火殘跡樣品中的微量縱火加速劑予以萃取回收,甚至是運用在實際採自縱火火場之殘跡證物。故而這兩種方法由於具有高靈敏度與再現性,將可替代傳統上靈敏度或再現性較差的頂空分析法成為縱火殘跡樣品前處理技術之一。
Supercritical fluid extraction (SFE) method and headspace solid-phase microextraction (HS-SPME) were employed in the present studies as effective sample pretreatment techniques of petroleum distillates from fire debris. Three petroleum distillates - 95 unleaded gasoline, kerosene, and premium diesel - were used as target analytes in the SFE study. The three petroleum distillates, in addition to cleaning naphtha, were also chosen as arson accelerants in the HS-SPME study.
It is well known that several factors affect the extraction efficiency of SFE, including extraction fluid density, extraction temperature, flow-rate, dynamic extraction time, and static equilibrium time. Thus, two sequential experiments, with a L16 (215) and a L16 (45) orthogonal array design, were conducted to evaluate and optimize primary SFE experimental factors. Similarly, some factors have been known to influence the efficiency of HS-SPME, such as fiber coatings, preincubation time, adsorption time, and adsorption temperature. Consequently, L8 (27) and L16 (45) orthogonal array experimental designs were employed to evaluate and optimize the HS-SPME experimental factors for analyzing the four arson accelerants.
Experimental results showed that an orthogonal array experimental design was a cost-effective and timesaving optimization strategy. Furthermore, it offered a systematic and efficient approach to optimize the extraction conditions for arson accelerants. Experimental results also demonstrated that the optimized SFE and HS-SPME conditions not only provided effective extraction conditions for spiked samples, but also successfully recovered residues of petroleum distillates from simulated fire samples or real fire debris. In summary, SFE and HS-SPME are efficient pretreatment methods for analyses of arson suspected fire debris. Their sensitivity and reproducibility are better than the headspace sampling method, which is a traditional sample pretreatment method for fire debris.
中文摘要
英文摘要
目錄
表目錄
圖目錄
一、超臨界流體萃取法之介紹
1.1 超臨界流體的發展歷史
1.2 超臨界流體的理化特性
1.3 超臨界流體的萃取原理
1.4 影響超臨界流體萃取效率的因素
1.5 超臨界流體的萃取模式
1.6 超臨界流體萃取的儀器裝置
二、固相微萃取法之介紹
2.1 固相微萃取法之發展背景
2.2 固相微萃取法之萃取模式及理論依據
2.2.1 直接固相微萃取法
2.2.2 頂空固相微萃取法
2.2.3 薄膜保護固相微萃取法
2.3 固相微萃取法之裝置介紹與操作步驟
2.3.1 固相微萃取法之裝置構造
2.3.2 固相微萃取法之操作步驟
2.4 影響固相微萃取法萃取效率之實驗參數
2.4.1 靜相披覆種類之影響
2.4.2 衍生試劑之影響
2.4.3 萃取模式之影響
2.4.4 樣品攪動程度之影響
2.4.5 脫附條件之影響
2.4.6 樣品體積之影響
2.4.7 吸附平衡時間之影響
2.4.8 溫度之影響
2.4.9 水樣品酸鹼值之影響
2.4.10 添加極性溶劑及鹽類之影響
2.4.11 曝露時間之影響
2.5 固相微萃取法之應用
三、直交表實驗計劃法剖繪
3.1 實驗計劃法的理念
3.2 實驗計劃法的執行原則
3.3 實驗計劃法的種類
3.3.1 常用改善實驗結果的方法
3.3.2 實驗計劃法的配置
3.4 直交表實驗計劃法
3.4.1 直交表介紹
3.4.2 直交的意涵
3.4.3 自由度的概念
3.4.4 交互作用的概念
3.4.5 選用直交表之注意事項
3.4.6 直交表的數據分析
3.5 直交表實驗計劃法於分析化學上之運用
四、縱火殘跡樣品前處理技術淺析
4.1 縱火火災的背景分析
4.2 縱火火災調查及鑑識之重要性
4.3 傳統縱火殘跡樣品前處理技術概述
4.3.1 頂空取樣法
4.3.2 蒸餾法
4.3.3 溶劑萃取法
4.3.4 吸附/脫附法
4.3.4.1 吸附劑的種類
4.3.4.2 吸附的方式
4.3.4.3 脫附的方式
4.4 縱火殘跡樣品前處理技術之展望
五、運用L16(215)二水準直交表實驗計劃法探討影響超臨界流體萃取技術在縱火殘跡樣品前處理之實驗因素
5.1 前言
5.2 實驗條件
5.2.1 藥品
5.2.2 儀器與氣相層析條件
5.2.3 實驗程序
5.3 結果與討論
5.3.1 檢量線之建立
5.3.2 捕集溶劑之選擇
5.3.3 樣品容許靜置時間之評估
5.3.4 直交表實驗計劃
5.3.5 實際火場殘跡樣品之分析
5.4 小結
六、運用L16(45)四水準直交表實驗計劃法探尋超臨界流體萃取技術在縱火殘跡樣品前處理之最適化萃取條件
6.1 前言
6.2 實驗條件
6.2.1 L16(45)直交表實驗計劃之步驟
6.2.2 模擬縱火殘跡樣品之製備
6.2.3 確認實驗實施的方法
6.2.4 前處理方法比較實驗之條件
6.3 結果與討論
6.3.1 L16(45)直交表實驗法之探索
6.3.2 確認實驗的分析
6.3.3 前處理方法之比較實驗
6.4 小結
七、運用直交表實驗計劃法探尋頂空固相微萃取技術在縱火殘跡樣品前處理之最適化萃取條件
7.1 簡介
7.2 實驗部份
7.2.1 藥品材料與儀器條件
7.2.2 實驗程序
7.3 結果與討論
7.3.1 第一階段之L8直交表實驗
7.3.2 第二階段之L16直交表實驗與再現性確認
7.3.3 模擬縱火殘跡樣品之分析與前處理方法之比較
7.4 小結
八、結論
九、參考文獻
[1]、L. T. Taylor, Supercritical Fluid Extraction, John Wiely & Sons, New York, 1996.
[2]、K. Zosel, French Patent 2, 079(1971)261.
[3]、D. R. J. Laws, N. S. Bath and A. G. Wheldon, U.S. Patent 4, 218(1980)491.
[4]、V. J. Krukonis, ACS Symp. Ser., 366(1988)30.
[5]、H. Coenan, R. Hagen and M. Kunth, U.S. Patent 4, 400(1983)398.
[6]、V. J. Krukonis, Polymer News, 11(1985)7.
[7]、V. Camel, A. Tambute and M. Caude, J. Chromatogr., 642(1993)263.
[8]、M. D. Luque de Castro, M. Valcarcel and M. T. Tena, Analytical Supercritical Fluid Extraction, Springer-Verlag, Berlin, 1994.
[9]、A. F. M. Barton (Editor), CRC Handbook of Solubility Parameters and other Cohesional Parameter, CRC Press, Boca Roton, Florida, 1983.
[10]、J. Pawliszyn, Solid Phase Microextraction: Theory and Practices, Wiley-VCH, New York, 1997.
[11]、C. L. Arthur and J. Pawliszyn, Anal. Chem., 62(1990)2145.
[12]、SUPELCO, Chromatography Products for Analysis and Purification, 2000.
[13]、J. Pawliszyn (Editor), Application of Solid Phase Microextraction, Royal Society of Chemistry, Cambridge, 1999.
[14]、L. Pan, M. Adams and J. Pawliszyn, Anal. Chem., 67(1995)4396.
[15]、C. L. Arthur, L. M. Killam, D. Buchholz, J. Pawliszyn and J. R. Berg, Anal. Chem., 64(1992)1960.
[16]、Z. Zhang and J. Pawliszyn, Anal. Chem., 65(1993)1843.
[17]、D. Louth, S. Motlafg and J. Pawliszyn, Anal. Chem., 64(1992)1187.
[18]、Z. Zhang and J. Pawliszyn, Anal. Chem., 67(1995)34.
[19]、J. Y. Hrong and S. D. Huang, J. Chromatogr. A, 678(1994)313.
[20]、K. D. Buchholz and J. Pawliszyn, Anal. Chem., 66(1994)160.
[21]、F. J. Santos, M. N. Sarrion and M. T. Galceran, J. Chromatogr. A, 771(1997)181.
[22]、C. L. Arthur, L. M. Killam, S. Motlagh, M. Lim, D. W. Potter and J. Pawliszyn, Environ. Sci. Technol., 26(1992)979.
[23]、D. W. Potter and J. Pawliszyn,. J. Chromatogr., 625(1992)247.
[24]、D. W. Potter and J. Pawliszyn, Environ. Sci. Technol., 28(1994)298.
[25]、K. D. Buchholz and J. Pawliszyn, Environ. Sci. Technol., 27(1993)2844.
[26]、Y. C. Wu and S. D. Huang, Anal. Chem., 71(1999)310.
[27]、A. A. Boyd-Boland and J. Pawliszyn, J. Chromatogr. A, 704(1995)163.
[28]、J. Chen and J. Pawliszyn, Anal. Chem., 67(1995)2530.
[29]、S. Magdic and J. Pawliszyn, J. Chromatogr. A, 723(1996)111.
[30]、A. Simplicio and L. Vilas Boas, J. Chromatogr. A, 833(1999)35.
[31]、T. Kumazawa, K. Sato, H. Seno, A. Ishii and O. Suzuki, Chromatographia, 43(1996)59.
[32]、C. Jurado, M. Gimenez, T. Soriano, M. Menedez and M. Repetto, J. Anal. Toxicol., 24(2000)11.
[33]、J. R. Almirall, J. Bruna and K. G. Furton, Science & Justice, 43(1996)283.
[34]、A. Steffen and J.Pawliszyn, Anal. Commun., 33(1996)129.
[35]、L. Wu, J. R. Almirall and K. G. Furton, J. High Resolut. Chromatogr., 22(1999)279.
[36]、B. L. Wittkamp and D. C. Tilotta, Anal. Chem., 67(1995)600.
[37]、T. Gorecki and J. Pawliszyn, Anal. Chem., 67(1995)3265.
[38]、D. C. Montgomery, Design and Analysis of Experiments (4th ed.), John Wiely & Sons, New York, 1997.
[39]、王政,機械工業雜誌,77年7月號,157-164頁,民國77年。
[40]、鷲尾泰俊原著,盧淵源校訂,蔡明三編譯,實驗計劃法(修訂版二刷),華泰圖書文物公司,台北,民國80年。
[41]、謝德遠,材料科學,第13卷第3期,1-9頁,民國71年。
[42]、P. J. Ross, Taguchi Techniques for Quality Engineering (2nd ed.), McGraw-Hill, New York, 1996.
[43]、A. Bendell, J. Disney and W. A. Pridmore, Taguchi Methods-Applications in World Industry, IFS. Bedford and Springer, Berlin, 1989.
[44]、American Supplier Institute, Taguchi Methods-Selected Papers on Methodology and Applications, ACI press, Dearborn, MI, 1988.
[45]、W. Chariteris, J. Soc. Dairy Technol., 45(1992)33.
[46]、李友錚,田口式品質工程,科建管理顧問股份有限公司,桃園,民國82年。
[47]、P. J. Oles and A. Yankovich, LC‧GC, 7(1989)579.
[48]、P. Billot and B. Pitard, J. Chromatogr., 623(1992)305.
[49]、H. B. Wan, W. G. Lan, M. K. Wong, C. Y. Mok and Y. H. Poh, J. Chromatogr. A, 677(1994)255.
[50]、K. K. Chee, M. K. Wong and H. K. Lee, Chromatographia, 41(1995)191.
[51]、K. K. Chee, M. K. Wong and H. K. Lee, J. Chromatogr. A, 723(1996)259.
[52]、W. G. Lan, M. K. Wong and N. Chen, Analyst, 119(1994)1659.
[53]、W. G. Lan, M. K. Wong and N. Chen, Analyst, 119(1994)1669.
[54]、W. G. Lan, M. K. Wong and N. Chen, Analyst, 120(1995)1115.
[55]、C. Y. Zhau, M. K. Wong, L. L. Koh and Y. C. Wee, Anal. Chim. Acta, 314(1995)121.
[56]、K. K. Chee, M. K. Wong and H. K. Lee, J. Microcol. Sep., 8(1996)131.
[57]、K. K. Chee, M. K. Wong and H. K. Lee, J. Microcol. Sep., 8(1996)29.
[58]、H. B. Wan, M. K. Wong and C. Y. Mok, J. Chromatogr. Sci., 33(1995)66.
[59]、H. B. Wan, W. G. Lan, M. K. Wong and C. Y. Mok, Anal. Chim. Acta, 289(1994)317.
[60]、K. K. Chee, W. G. Lan, M. K. Wong and H. K. Lee, Anal. Chim. Acta, 312(1995)271.
[61]、W. G. Lan, K. K. Chee, M. K. Wong and H. K. Lee, Analyst, 120(1995)281.
[62]、J. Wu, M. K. Wong, H. K. Lee and C. N. Ong, J. Chromatogr. Sci., 34(1996)139.
[63]、J. Wu, M. K. Wong, S. F. Y. Li, H. K. Lee and C. N. Ong, J. Chromatogr. A, 709(1995)351.
[64]、Th. Ehmann, K. Bächmann, L. Fabry, H. Rüfer, S. Pahlke and L. Kotz, Chromatographia, 45(1997)301.
[65]、Y. He and H. K. Lee, J. Chromatogr. A, 793(1998)331.
[66]、W. G. Lan, M. K. Wong, K. K. Chee and Y. M. Sin, Analyst, 120(1995)273.
[67]、W. Bertsch, Anal. Chem., 68(1996)541A.
[68]、內政部消防署網址:Http://www.nfa.gov.tw/
[69]、ASTM Method E1387-95 Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography, American Society for Testing and Materials, West Conshohocken, PA, 1995.
[70]、W. Bertsch and Qi-Wei Zhang, Anal. Chim. Acta, 236(1990)183.
[71]、姜雲生,刑事科學,第26期,58-74頁,民國77年。
[72]、張維敦,姜雲生,刑事科學,第31期,39-70頁,民國80年。
[73]、張維敦,楊易達,姜雲生,刑事科學,第36期,101-116頁,民國82年。
[74]、W. Bertsch, G. Holzer and C. S. Sellers, Chemical Analysis for the Arson Inverstigator and Attorney, Hüthig, Heidelberg, Germany, 1993.
[75]、W. Bertsch, Forensic Sci. Rev., 9(1997)1.
[76]、周鴻呈,中央警察大學鑑識科學研究所碩士論文,民國87年。
[77]、B. Caddy and F. P. Smith, Forensic Sci. Rev., 3(1991)57.
[78]、ASTM Method E1388-95 Standard Practice for Sampling of Headspace Vapors from Fire Debris Samples, American Society for Testing and Materials, West Conshohocken, PA, 1995.
[79]、J. W. Bracket, J. Crim. Law Criminol. Police Sci., 46(1955)554.
[80]、ASTM Method E1385-95 Standard Practice for Separation and Concentration of Ignitable Liquid Residues from Fire Debris Samples by Steam Distillation, American Society for Testing and Materials, West Conshohocken, PA, 1995.
[81]、ASTM Method E1386-95 Standard Practice for Separation and Concentration of Ignitable Liquid Residues from Fire Debris Samples by Solvent Extraction, American Society for Testing and Materials, West Conshohocken, PA, 1995.
[82]、L. Frontela, J. A. Pozas and L. Picabea, Forensic Sci. Intl., 75(1995)11.
[83]、W. Bertsch and G. Holzer, European Chromatogyaphy News, 3(1988)12.
[84]、ASTM Method E1412-95 Standard Practice for Separation and Concentration of Ignitable Liquid Residues from Fire Debris Samples by Passive Headspace Concentration, American Society for Testing and Materials, West Conshohocken, PA, 1995.
[85]、ASTM Method E1413-95 Standard Practice for Separation and Concentration of Ignitable Liquid Residues from Fire Debris Samples by Dynamic Headspace Concentration, American Society for Testing and Materials, West Conshohocken, PA, 1995.
[86]、QL. Ren and W. Bertsch, J. Forensic Sci., 44(1999)504.
[87]、C.-T. Huang and Y.-Z. Hsieh, Chemistry (The Chinese Chem. Soc., Taipei), 53(1995)139.
[88]、C.-T. Huang and Y.-Z. Hsieh, J. Chin. Chem. Soc. (Taipei), 2002(in press).
[89]、內政部消防署,消防工作報告書,94頁,台北市,民國八十五年。
[90]、S. Bowadt, S. B. Hawthorne, J. Chromatogr. A, 703(1995)549.
[91]、C. L. Phelps, N. G. Smart and C. M.Wai, J. Chem. Educ., 73(1996)1163.
[92]、J. M. del Valle and J. M. Aguilera, Food Sci. Technol. Int., 5(1999)1.
[93]、V. Lopez-Avila, J. Bendicto, N. S. Dodhiwala and R. Young, J. Chromatogr. Sci., 30(1992)335.
[94]、M. K. L. Bicking, T. G. Hayes, J. C. Kiley and S. N. Deming, J. Chromatogr. Sci., 31(1993)170.
[95]、M. W. Brooks and P. C. Uden, J. Chromatogr., 637(1993)175.
[96]、S. B. Hawthorne, K. M. Hegvik, Y. Yang and D. J. Miller, Fuel, 73(1994)1876.
[97]、F. Pelusio, T. Nilsson, L. Montanarella, R. Tilio, B. Larsen, S. Facchetti and J. O. Madsen, J. Agri. Food Chem., 43(1995)2138.
[98]、A. Steffen and J. Pawliszyn, J. Agri. Food Chem., 44(1996)2187.
[99]、M. Chai and J. Pawliszyn, Environ. Sci. Technol., 29(1995)693.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top