跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳玉蓉
研究生(外文):Chen Yu-rung
論文名稱:鉬矽氧嵌附式減光型相移圖罩之研製與模擬
論文名稱(外文):Fabrication and Simulation of MoSiO Embedded Material for Embedded Attenuated Phase-Shifting Mask
指導教授:龍文安龍文安引用關係
指導教授(外文):Loong Wen-an
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:122
中文關鍵詞:嵌附層折射率吸收係數電子能譜化學分析儀與傅利葉轉換紅外光譜儀傳統鉻膜圖罩搭配偏軸二孔發光
外文關鍵詞:embedded layerrefractive indexabsorptivityESCA and FT-IRCOG assisted with OAI dipole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
嵌附式減光型相移圖罩為重要解像度增進技術之一,本論文重點在研究適用於微影波長193 nm之嵌附式減光型相移圖罩MoSiO材質,探討在不同的成膜方式下,對光學、化學性質的影響。
正規嵌附層MoSiO薄膜在濺鍍成膜時,改變通入氧氣流量,可得符合嵌附層之需求。此薄膜於微影波長193 nm之折射率為1.813,吸收係數為0.35,符合相移角度180度之薄膜厚度計算值為118.69 nm;另成膜方式為MoSi薄膜加以氧電漿改質,通入氧氣時間不同,光學性質亦不同,符合嵌附層之微影波長193 nm折射率為1.637,吸收係數為0.527,符合相移角度180度之薄膜厚度計算值為151.49 nm。
由於嵌附層表面不似鏡面光滑平坦而產生散射光,導致所量測的反射率、透射率較真實為低。本論文修正反射率、透射率再應用於反射率-透射率法,所得之折射率與吸收係數較接近商業儀器n&k分析儀量測出的值,證明此修正之價值。
以電子能譜化學分析儀與傅利葉轉換紅外光譜儀對薄膜進行分析,發現薄膜內二氧化矽與三氧化鉬成份增加時,折射率增加,吸收係數減少,有良好之化學組成與光學性質之關聯性,實際上薄膜之相互鍵結關係相當複雜,尚無法證實其對細部變化的影響。
模擬結果顯示,以傳統鉻膜圖罩搭配偏軸二孔發光於248 nm微影時,可成功製作0.115 μm密集線隙,且對於焦深與製程寬容度具較佳之改善效果。

Embedded Attenuated Phase-Shifting mask (EAPSM) is one of the important resolution enhancement techniques. The main point of this thesis is to study MoSiO which is material for EAPSM in 193 nm lithography, the effects of various ways of film growth on its optical and chemical properties.
By changing the O2 flow rates in sputtering conditions, qualified MoSiO embedded layer could be obtained. Under 193 nm, refractive index of this film is 1.813, and absorptivity is 0.35, calculated thickness of this film which has a degree of phase shift 180 is 118.69 nm; in other different way of film preparation, MoSi film was treated with O2 plasma, the flow of oxygen also changed the property. For the qualified MoSiO film for 193 nm lithography, refractive index is 1.637, and absorptivity is 0.527, calculated thickness of this film which has a degree of phase shift 180 is 151.49 nm.
The scattering light was generated from the surface of embedded layer which was not like a mirror, resulted in the facts that the measured reflectance and transmittance were smaller than its real reflectance and transmittance. The modified the R-T Method was used to determine n and k, and the values closed to the n and k measured by n&k analyzer, so the value of modified method has been proved.
Using ESCA and FT-IR to analyze MoSiO film, the increasing contents of SiO2 and MoO3 will increase n and decrease k. Therefore, the chemical compositions and optical properties are well correlated, however, their detailed correlations can not be verified.
The result of simulation showed that traditional COG assisted with OAI dipole could fabricate 115 nm dense line in 248 nm, the DOF and process window were also improved.

第一章 緒論……………………………………………………………1
第二章 文獻回顧………………………………………………………4
2-1 相移圖罩之發展歷程與分類………………………………………4
2-2 相移圖罩之工作原理與沉積原理…………………………………6
2-3 相移圖罩之技術發展………………………………………………9
2-4 理想嵌附式減光型相移圖罩之需求與化學穩定度之探討……10
2-5 嵌附層光學參數的測求…………………………………………12
2-6 相移圖罩材質的發展……………………………………………14
2-7 嵌附層的蝕刻性質………………………………………………23
第三章 實驗方法……………………………………………………51
3-1 實驗物品…………………………………………………………51
3-2 實驗儀器…………………………………………………………52
3-3 主要分析儀器之基本原理………………………………………53
3-4 實驗步驟…………………………………………………………55
3-5 應用公式…………………………………………………………55
第四章 結果與討論……………………………………………………59
4-1 嵌附層光學性質探討……………………………………………59
4-2 嵌附層化學穩定度的探討………………………………………63
4-3 反射率-透射率法(R-T Method)、反射率-透射率修正法(Modification of the R-T Method)和n與k法(n&k Method)之比較…64
4-4 傳統鉻膜圖罩搭配偏軸發光對密集線隙圖案的模擬…………65
第五章 結論…………………………………………………………98

1. M. Hibbbs et al., “Evaluation of Molybdenum Silicide for Use as a 193 nm Phase-Shifting Absorber in Photomask Manufacturing”, 20th BACUS, SPIE, Vol. 4186, p. 444 (2001).
2. S. Kanai et al., “Development of a MoSi-based bi-layer HT-PSM blank for ArF Lithography”, 20th BACUS, SPIE, Vol. 4186, p. 846 (2001).
3. T. Matsuo et al., “Materials for an Attenuated Phase-Shifting Mask in 157 nm Lithography”, 20th BACUS, SPIE, Vol. 4186, p. 268 (2001).
4. T. Onodera et al., “ZrSiO, a new and robust material for attenuated phase-shift masks in ArF lithography”, 19th BACUS, SPIE, Vol. 3873, p. 337 (1999).
5. N. Fukuhara et al., “Development of ZrSiO Attenuated Phase Shift Mask for ArF Excimer Laser Lithography”, 19th BACUS, SPIE, Vol. 3873, p. 979 (1999).
6. H. Suda et al., “Development of MoSi-based halfton phase-shift blank and mask for ArF Lithography”, 20th BACUS, SPIE, Vol. 4186, p. 58 (2001).
7. N. Kachwala et al., “High transmission attenuated PSM-Benefits and Limitations through a validation study of 33﹪, 20﹪and 6﹪transmission masks”, SPIE, Vol. 4000, p. 1163 (2000).
8. T. Ii et al., “Realization of mass production for 130 nm node and application for high-transmission using ZrSi-based attenuated phase-shift mask in ArF lithography”, 20th BACUS, SPIE, Vol. 4186, p. 297 (2001).
9. G. M. Reynolds et al., “TiSi-nitride attenuating phase-shift photo mask for 193 nm lithography”, 18th BACUS, SPIE, Vol. 4186, p. 58 (1998).
10. C. M. Lin and W. A. Loong, “ TiSixNy and TiSixOyNz as Embedded Material for Attenuated Phase Shifter Mask in 193 nm ”, Microelectronic Engineering, Vol. 46, p. 93 (1999).
11. C. M. Lin and W. A. Loong et al., “TiSixOy AS AN ABSORPTIVE SHIFTER FOR EMBEDDED PHASE-SHIFTING MASK IN 248 NM AND THE MODIFICATION OF R-T METHOD FOR THE DETERMINATION OF SHIFTER’S n AND k”, Microelectronic Engineering, Vol. 41/42, p. 125 (1998).
12. C. M. Lin and W. A. Loong, “ Correlation between the Chemical Compositions and Optical Properties of AlSixNy Embedded Layer for Attenuated Phase-Shifting Mask in 193 nm and the Modification of the R-T Method for Measuring n and k ”, J. Vac. Sci. Technol., B, Vol. 18, No. 6, p.3371 (2000).
13. C. M. Lin et al., “Studies of nitride- and oxide-based materials as absorptive shifters for embedded attenuated phase-shifting mask in 193 nm”, SPIE, Vol. 3679, p. 1153 (1999).
14. S. S. Koo et al., “Study of TiSi-nitride based attenuated phase shift mask for ArF lithography”, 19th BACUS, SPIE, Vol. 3873, p. 969 (1999).
15. T. Onodera et al., “ Investigation of attenuated phase-shifting mask material for 157-nm lithography”, SPIE, Vol. 4346, p. 61 (2001).
16. K. K. Shih and D. B. Dove, “Thin film materials for the preparation of attenuating phase shifte masks”, J. Vac. Sci. Technol., B, Vol. 12, No. 1, p.32 (1994).
17. M. Ushida et al., “Development of Deep UV MoSi-based embedded phase-shifting mask (EPSM) blanks”, 16th BACUS, SPIE, Vol. 2884, p. 58 (1996).
18. Carcia et al., “ Materials Screening for Attenuating Embedded Phase Shift Photoblanks for DUV and 193 nm Photolithography ”, 16th BACUS, SPIE, Vol. 2884, p. 255 (1996).
19. Y. Saito et al., “Attenuated Phase Shifte Mask Blanks with Oxide or Oxi-nitride of Cr or MoSi Absorptive Shifter”, SPIE, Vol. 2254, p. 60 (1994).
20. Y. Tokoro et al., “Attenuated Phase Shifting Mask Blanks for Deep Ultra Violet”, 14th BACUS, SPIE, Vol. 2322, p. 387 (1994).
21. B. W. Smith et al., Plasma reactive ion etching of 193 nm attenuated phase shift mask materials”, J. Vac. Sci. Technol., B, Vol. 15, No. 6, p.2259 (1997).
22. D. L. White et al., “Phase-mask effects by dark-field lithography”, SPIE, Vol. 4000, p. 366 (2000).
23. D. L. White et al., “Lithographic projectors with dark-field illumination”, J. Vac. Sci. Technol., B, Vol. 17, No. 6, p.3301 (1999).
24. T. Yamamoto et al., “Impact of Alternating Phase Shift Mask Quality on 100 nm Gate Lithography”, 20th BACUS, SPIE, Vol. 4186, p. 423 (2001).
25. S. S. Koo et al., “Study on the Potentialities of sub-100 nm Optical Lithography of Alternating and Phase-edge Phase Shift Mask for ArF Lithography”, 20th BACUS, SPIE, Vol. 4186, p. 346 (2001).
26. Y. J. Chan and C. S. Su, “Reactive-ion etching of WSix in CF4+O2 and the associated damage in GaAs”, J. Vac. Sci. Technol., B, Vol. 14, No. 4, p.2550 (1996).
27. B. W. Smith et al., “Development and characterization of nitride and oxide based composite materials for sub 0.18 μm attenuated phase shift masking”, Microelectronic Engineering, Vol. 35, p. 201 (1997).
28. I. Kagami et al., “Fabrication process of Cr-based attenuated phase shift masks for KrF excimer laser lithography”, 19th BACUS, SPIE, Vol. 3873, p. 953 (1999).
29. R. Jonckheere et al., “Molybdenum silicide based attenuated phase-shift masks”, J. Vac. Sci. Technol., B, Vol. 12, No. 6, p.3765 (1994).
30. Y. Jin et al., “0.1 μm WSiN-gate fabrication of GaAs metal-semiconductor field effect transistors using electron resonance ion stream etching with SF6-CF4-SiF4-O2”, J. Vac. Sci. Technol., B, Vol. 15, No. 6, p.2639 (1997).
31. C. M. Lin and W. A. Loong et al., “The correlation between the chemical compositions and optical properties of TiSixNy as an embedded layer for AttPSM in 193 nm”, Microelectronic Engineering, Vol. 57/58, p. 481 (2001).
32. D. L. Windt et al., “Amorphous carbon films for use as both variable-transmission apertures and attenuated phase shift masks for deep ultraviolet lithography”, J. Vac. Sci. Technol., B, Vol. 17, No. 3, p.2639 (1999).
33. H. Mohri et al., “Chromium-based attenuated phase shifter for DUV exposure”, SPIE, Vol. 2322, p. 288 (1994).
34. M. Nakajima et al., “Attenuated phase-shift masks with a single-layer absorptive shifter of CrO, CrON, MoSiO and MoSiON film”, SPIE, Vol. 2197, p. 111 (1994).
35. H. I. Smith et al., “Spatial period division-A new technique for exposing submicrometer-linewidth periodic and quaslperlodic patterns”, J. Vac. Sci. Technol., B, Vol. 16, No. 6, p.1949 (1979).
36. B. J. Lin, “PHASE-SHIFTING AND OTHER CHALLENGES IN OPTICAL MASK TECHNOLOGY”, SPIE, Vol. 1496, p. 54 (1990).
37. Z. Cui and P. D. Prewett, “Characterization of Embedded Phase Shift Masks by Relfectance-Transmittance Measurement”, Microelectronic Engineering, Vol. 30, p. 145 (1996).
38. T. C. Paulick, “Inversion of normal-incidence (R, T) measurements to obtain n+ik for thin films”, Applied Optics, Vol. 25, No. 4, p. 562 (1986).
39. A. Hjortsberg, “Determination of optical constants of absorbing materials using transmission and reflection of thin films on partially metallized substrates: analysis of the new (T, Rm) technique”, Applied Optics, Vol. 20, No. 7, p. 1254 (1981).
40. J. E. Nestell and R. W. Christy, “Derivation of Optical Constants of Metals from Thin-Film Mesurements at Oblique Incidence”, Applied Optics, Vol. 11, No. 3, p. 643 (1972).
41. B. W. Smith et al., “Attenuated phase shift mask materials for 248- and 193-nm lithography”, MICROLITHOGRAPHY WORLD, p. 7 (1997).
42. B. W. Smith et al., “Attenuated phase shift mask materials for 248 and 193 nm lithography”, J. Vac. Sci. Technol., B, Vol. 14, No. 6, p.3719 (1996).
43. F. D. Lai and L. A. Wang, “Optical properties of CrO/ZrO optical superlattice for attenuated phase shifting mask at 193 nm wavelength”, Microelectronic Engineering, Vol. 57/58, p. 439 (2001).
44. F. D. Lai and L. A. Wang, “Optical-constant tunable (ZrO2)x(Cr2O3)y(Al2O3)1-x-y Optical superlattices for attenuated phase shift mask in ArF lithography”, J. Vac. Sci. Technol., B, Vol. 19, No. 6, p.2617 (2001).
45. K. Kikuchi et al., “Optimization method of the double exposure technique with alt-PSMs for below a 0.13 μm node”, J. Vac. Sci. Technol., B, Vol. 19, No. 6, p.2371 (2001).
46. C. M. Lin and W. A. Loong, “AlSiNx as an Embedded Layer for Attenuated phase-shifting mask in 193 nm and the Utilization of a Chemically Amplified Negative Resist NEB-22 for Maskmaking”, Microelectronic Engineering, Vol. 53, p. 133 (2000).
47. C. Pierrat et al., “Dry etched molybdenum silicide photomasks for submicron integrated circuit fabrication”, J. Vac. Sci. Technol., B, Vol. 9, No. 6, p.3132 (1991).
48. C. Chu et al., “Effect of fluorocarbon polymer deposition on the selective etching of SiO2/Photoresist in high density plasma”, J. Vac. Sci. Technol., B, Vol. 18, No. 6, p.2763 (2000).
49.Y. Yamada et al., “ACTUAL USE OF PHASE SHIFT MASK”, 15th BACUS, SPIE, Vol. 2621, p. 266 (1995).
50.B. Kim, H. J. Choi and B. T. Lee, “Surface roughness of silicon carbide etched in a C2F6/O2 inductively coupled plasma”, J. Vac. Sci. Technol., A, Vol. 20, No. 2, p.424 (2002).
51.I. Umezu et al., “Deposition of silicon nitride films by pulsed laser ablation of the Si target in nitrogen gas”, J. Vac. Sci. Technol., A, Vol. 20, No. 1, p.30 (2002).
52. J. F. Moulder et al., “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics Inc., (1995).
53.龍文安,“積體電路微影製程”,高立,台北,民國87年。
54.黃振昌,“X光光電子能譜儀”,表面分析儀器,國科會精儀中心,頁5,民國87年。
55.林政旻,“193 nm微影用正規與高透射率嵌附層材料之探討及減光型相移圖罩應用之模擬”,國立交通大學博士論文,民國90年。
56.陳宗逸,“鉭矽氮類嵌附式減光型相移圖罩之研製與模擬”,國立交通大學碩士論文,民國89年。
57.曾金池,“IC光罩應用介紹及其未來發展”,電子與材料雜誌,第11期,頁81,民國90年。
58.陳碧灣,“先進光罩製作技術的挑戰”,電子與材料雜誌,第11期,頁77,民國90年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [22] 周禮君,田珮,「有機矽烷氧基前驅物衍生的有機-無機混成溶凝膠材料」,化工技術,第8卷第5期,152-164頁,2000年5月。
2. 林美和(民85)。資訊素養與終身學習的關係。社教雙月刊,73,7-12。
3. [29] 蔡大翔,「溶凝膠法在光纖上之應用-預型體與摻鉺光纖製備」,化工,第46卷第5期,72-80頁,1999年10月。
4. 黃慶祥(民75)。師範教育與電腦素養。師友月刊,209,46-48。
5. [21] 丁原傑,「無機-有機混合溶凝膠材料之應用」,化工技術,第8卷第5期,138-149頁,2000年5月。
6. 林慧芬(民87)。從幼教老師電腦網路使用現況與需求探討幼教老師專業成長管道。幼兒教育年刊,91-106。
7. [23] 丁原傑,「無機有機混合溶凝膠配製與應用」,化工,第46卷第5期,63-71頁,1999年10月。
8. 吳正己、林凱胤(民85)。電腦網路通訊與教師專業成長。視聽教育雙月刊,37(6),1-10。
9. 杜榮珠、王美智(民83)。電腦在教學上的應用-美國中小學電腦教學最新概況。資訊與教育,44,37-41。
10. [32] 王偉洪,「溶凝膠在製作光學鍍膜之應用」,化工,第46卷第5期,81-93頁,1999年10月。
11. [41] 陳志平,林維新,「溶凝膠在製備固定化生物觸媒之應用」,化工技術,第8卷第5期,152-164頁,2000年5月。
12. [42] 朱一民,「薄膜反應器在生化與食品程序上之應用」,化工技術,第7卷第11期,211-217頁,1999年11月。
13. [49] 曾俊元,周秀玉,「SrBi2Ta2O9薄膜之製造與電性探討」,化工技術,第8卷第5期,128-137頁,2000年5月。
14. [50] 陳慧英,黃定加,朱秦億,「溶膠凝膠法在薄膜製備上之應用」,化工技術,第7卷第11期,211-217頁,1999年11月。
15. [51] 王怡凱,曾俊元,蔡明憲,「溶凝膠在製作電子元件上之應用」,化工,第46卷第5期,81-93頁,1999年10月。