跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建帆
論文名稱:氮電漿處理低介材HSQ應用於銅金屬製程之薄膜特性研究
論文名稱(外文):The Study on Thin Film Properties of N2 Plasma Treated Low-k Material Hydrogen Silsequioxane(HSQ) in Copper Metallization Process
指導教授:龍文安龍文安引用關係
指導教授(外文):Loong Wen-an
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:115
中文關鍵詞:氮電漿銅製程
外文關鍵詞:Plasma treatmentHSQLow-k
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文重點在於探討銅金屬製程與低介材HSQ(Hydrogen Silsesquioxane)薄膜之間的交互影響。研究結果發現:
1.旋塗完成之HSQ薄膜經高溫爐管熱固化一小時候,厚度會提昇至6542 Å,這是因為HSQ的多孔性結構之形成所致。折射率方面,也因為熱固化程序改變了HSQ薄膜的結構,使其重新鍵結,形成多孔性結構,由剛塗佈時的2.32降為1.75。
2.經過400℃熱固化處理後,在1050 ㎝-1處的Si-O鍵結收峰有增強之勢。此時為HSQ薄膜由熱固化前之籠狀結構(Cage-like)變為網狀結構(Network)。
3.經電漿處理之HSQ薄膜:
(1) N2電漿處理直接於薄膜表面取代形成含氮之薄膜表面比原本具多孔性的HSQ薄膜更為緻密,而造成厚度稍有減少。
(2) 經N2電漿處理的薄膜表面,確實有防止HSQ與外界水氣作用之效果。
(3) 四個參數(溫度、時間、功率、壓力)對表面粗糙度之影響並不是非常顯著。
(4) 隨著電漿處理時間增加,推測含氮鍵結之成分比例亦越大,因而造成薄膜本身應力增加,基材對薄膜本身之拉伸應力則相對提高。
(5) 由XPS分析發現於Binding Energy約400 eV時,有氮成份的鍵結,而且根據文獻判斷應為SiNx鍵結無誤,並且配合XRD觀察,於2θ=27度及33度可觀察到氮矽化合物之繞射峰,證明N2電漿確實與HSQ薄膜表面產生化學作用。
4. Cu∕HSQ(N2, Plasma)∕Si 之結構特性探討:
(1)經400℃回火程序銅薄膜表面大致上可維持相當良好的表面性質,並無明顯折出物或局部破裂之現象。
(2)回火溫度400℃處理後之試片,片電阻均有大幅下降的現象,此推測為熱回火處理程序,而引發銅膜之再結晶,使得銅膜趨於較佳之Cu (111)晶面結構而提高其導電度。
(3)為N2電漿處理之HSQ薄膜之XRD圖,觀察結果顯示,繞射峰相當平緩代表結晶粒非常細微,且有許多非結晶成分(Amorphous Component)。

Abstract
The interaction between copper metallization process and low-k material HSQ was studied. The results were as follows:
1. Because of the forming of HSQ porous structure, the thickness of the HSQ increased from to Ǻ by curing process. The index of refraction also decreased from 2.32 to 1.75 (under 633 nm).
2. After the curing at 400℃, Si-O peak(FTIR)at 1050 cm-1 increased. This is an indication that HSQ structure changed from cage-like to network。
3. HSQ after nitrogen plasma treatment
1. Because of the nitrogen-content surface, HSQ became more dense, therefore, the thickness decreased.
2. The nitrogen-content surface retarded HSQ from reacting with the moisture surrounding.
3. The influence of four parameters (temperature, time, power, and pressure) to the roughness of the surface is not obvious.
4. With the increasing of plasma treatment time, the proportion of Si-N bond increased, which caused the increasing of the stress of the HSQ itself.
5. From the ESCA, Binding Energy at 400 eV (N, 1s), according to the documents, it belongs to SiNx bonding. Assisted by the observation of XRD, there are diffraction peaks at 2θ=27 and 33 degree, which proved N2 plasma really has a chemical reaction with HSQ film.
4. The characteristics of Cu/ HSQ (N2, Plasma)/ Si structure:
1.By the procedure of 400℃ curing, the surface of the copper maintained the quite good quality and didn’t have any obvious defects or cracks.
2.After 400℃ curing, the sheet resistance of this muti-level structure substantially lowered. It is suggested that re-crystallization of copper formed a better crystal structure, therefore, raised its electrical conductivity.
3.From the observation of the XRD graphies, the HSQ after N2 plasma treatment showed the flatten diffraction peak which is a indication of the existence of small crystalline grain and a large amount of amorphous component.

目錄
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
誌 謝………………………………………………………………Ⅲ
目 錄………………………………………………………………Ⅳ
圖表目錄………………………………………………………………Ⅴ
第一章 緒論…………………………………………………………....1
第二章 文獻回顧………………………………………………………4
2.1 銅製程之發展…………………………………………….4
2.1.1 金屬化材料.……………………………………….4
2.1.2 銅沉積方式之優劣………………………………..5
2.2 低介材………………………………………….6
2.2.1以矽為本體之低介材…………………...7
2.2.2有機高分子之低介材………………….12
2.2.3低介材的發展………………………….12
2.3 擴散阻障層………………………………………………12
2.3.1以矽為本體之低介電材料所配搭的阻障層……..13
2.3.2有機高分子低介電材料所配搭的阻障層………...17
2.3.3熱穩定性之比較…………………………………...18
2.3.4沉積方式之比較…………………………………...18
2.3.4.1 離子化金屬電漿(IMP)…………………..19
2.3.4.2 金屬有機化學氣相沉積法(MOCVD)…..20
2.4 電漿蝕刻………………………………………………….21
2.4.1 SiO2∕Si3N4結構之電漿蝕刻……………………22
2.4.2 低介材之電漿蝕刻………………………………23
2.4.3 蝕刻硬罩(SiO2、SiNx、SiC)∕低介材結構
之電漿蝕刻………………………………………25
第三章 實驗步驟與分析方法………………………………………...29
3.1實驗流程………………………………………………….29
3.2試片之製備……………………………………………….29
3.3實驗儀器………………………………………………….30
3.4材料分析與量測………………………………………….31
3.5應用公式………………………………………………….33
第四章 結果與討論…………………………………………………...35
4.1低介材(HSQ)之特性探討………………….35
4.1.1實驗參數與樣品……………………………………35
4.1.2厚度與折射率………………………………………35
4.1.3 FT-IR 分析…………………………………………36
4.1.4應力分析……………………………………………37
4.2 HSQ薄膜以N2電漿處理之探討………………………..37
4.2.1處理條件……………………………………………37
4.2.2 FT-IR分析………………………………………….38
4.2.3厚度與折射率變化…………………………………38
4.2.4應力分析……………………………………………39
4.2.5 AFM 表面分析……………………………………..39
4.2.6 XPS 分析………………………………………..….40
4.3 Cu∕HSQ(N2, Plasma)∕Si 之結構特性探討……..41
4.3.1 SEM分析……………………………………………41
4.3.2片電阻(Sheet Resistance)量測……………………42
4.3.3 XRD分析……………………………………………43
第五章 結論……………………………………………………………45
參考文獻………………………………………………………………..48

參考文獻
1. W. W. Lee et al., Mather Res. SOC. Bulletin 22 (10), pp. 19- 23 (1997).
2. R. D. Goldblatt et al., Proc. International Interconnect Technol. Conf. (IEEE) , pp. 262-263 (2000).
3. W. Wang et al., Adv. Metal and Inter. Sys. For ULSI Applic., (1997).
4. G. Headt, A. Mcteer and S. Meikle, Semiconductor FABTECH, 11th edition, p. 257 (2000).
5. Y. Morand et al., Microelectronic Engineering, Vol. 50, p. 391 (2000).
6. 莊達人著, “VLSI製造技術”, 頁455, 高立, 台北, 民87.
7. 龍文安著, “積體電路微影製程”, 頁374, 高立, 台北, 民89.
8. P. F. Cheng et al., J. Vac. Sci. Technol., B 13, 203-208 (1995).
9. D. Popovici et al., Applied Surface Science, Vol. 126, p. 198 (1998).
10. G. Ffiese et al., Microelectronic Engineering, Vol. 37, p. 157 (1997).
11. J. Rober et al., Microelectronic Engineering, Vol. 37, p. 111 (1997).
12. A. K. Hochberg et al., Proc. Advanced Metallization Conf. For ULSI Applications, p. 79 (1997).
13. J. H. Son et al., Thin Solid Film, Vol 335, pp. 229-236 (1998).
14. H. Wolf et al., Microelectronic Engineering, Vol. 33, p. 429 (1997).
15. Christoph Steinbruchel and Barry L. Chin, “Copper Interconnect Tech. ”, pp. 47-62, SPIE, Washington (2001).
16. E. Korczynski, “Low-k Dielectric Costs for Dual-damascene Integration”, Solid State Technology, June, p. 43 (1999).
17. Karen Maex et al., Semiconductor FABTECH, 14th edition, p. 189 (2001).
18. 張鼎張,電子月刊,卷5,期47,頁104,民國90年。
19. Licheng M . Han et al., J. of the Electrochemical Society, Vol. 148(7), pp. 148-153 (2001).
20. Zhen Cheng Wu et al., J. of the Electrochemical Society, Vol. 148(6), pp. 127-132 (2001).
21. Zhen Cheng Wu et al., J. of the Electrochemical Society, Vol. 148(6), pp. 109-114 (2001).
22. Po Tsun Liu et al., J. of the Electrochemical Society, Vol. 148(2), pp. 30-34 (2001).
23. Po Tsun Liu et al., IEEE Transaction on Electron Device, Vol 47, No. 9, pp. 1733-1739 (2001).
24. S. Lee and J. W. Park, J Electrochem. Soc. Vol. 146, pp. 697-701 (1999).
25. T. C. Chang et al., Thin Film Solid, Vol. 398, pp. 637-640 (2001).
26. K. Endo, Mater. Res. Soc. Bullentin, Vol. 22, pp. 55-58 (1997).
27. H. Yang et al., Appl. Phys. Lett. 73, pp. 1514-1516 (1998).
28. S. Takeishi et al., J. Electrochem. Soc. 144, pp. 1797-1802 (1999).
29. T. Hara et al., J. Electrochem. Soc. 146, pp. 2333-2336 (1999).
30. E. Korczynski,“Low-k Dielectric Cost for Dual-damascene Integration”, Solid State Technology, June, p. 100 (1999).
31. S. Lee et al., J. Appl. Phys., Vol. 85, p. 473 (1999).
32. C. Ryu et al., “Barrier for Copper Interconnections”, Solid State Technology, April, p. 53 (1999).
33. C. Murray et al., Microelectronic Engineering, Vol. 60, pp. 133-141 (2002).
34. X. Xiao et al., Microelectronic Engineering, Vol. 55, pp. 53-57 (2001).
35. S. V. Nitta et al., J. Vac. Sci. Technol., B 17(1), p. 205 (1999).
36. Chung-Hui Chen et al., Solid State Electronics, Vol. 45, pp. 199-203 (2001).
37. Vincent Arnal et al., Microelectronic Engineering, Vol. 60, pp.143-148 (2002).
38. Vincent Arnal et al., Microelectronic Engineering, Vol. 60, pp.43-45 (2000).
39. S. C. Sun et al., VLSI Multilevel Interconnect Conference, p. 113 (1999).
40. T. M. Lu and J. A. Moore, Mater. Res. Soc. Bulletin 22(10), pp. 28-31 (1997).
42. Luara Peter,“ Industry Divided on Low-k Dielectric Choice”, Semiconductor International, May, p.52 (2001).
43. P. Townsend, Mater. Res. Soc. Symp. Proc. 476, pp. 9-15 (1997).
44. A. Labiadh et al., Microelectron., Vol. 33, pp. 369-375 (1997).
45. S. E. Kim et al., Sol. State. Electron., Vol. 43, pp. 1019-1023 (1999).
46. M. Takeyama et al., J. Vac. Sci. Technol., B, 14(2), p. 674 (1996).
47. Y. Morand et al., Thin Solid Film, Vol. 345, p. 245 (2000).
48. Y. K. Choe et al., J. Electrochem. Soc. 145, pp. 4226-4233 (1998).
49. G. Ffiese et al., Microelectronic Engineering, Vol. 37, p. 157 (1997).
50. S. C. Sun, Am. Inst. Phys. Conf. Proc., Vol. 418, pp. 451-456 (1998).
51. A. Hirata et al., J. Appl. Phys., Vol. 38, pp. 2355-2359 (1999).
52. S. Lee et al., J. Appl. Phys., Vol. 85, p. 473 (1999).
53. O. H. Gokce et al., Thin Solid Film, Vol. 353, p. 149 (1999).
54. G. Turban et al., Microelectronic Engineering, Vol. 50, p. 459 (2000).
56. T. Laurila et al., Microelectronic Engineering, Vol. 60, pp. 71-80 (2002).
57. D. S. Yoong et al., Microelectronic Engineering, Vol. 60, pp. 119-164 (2002).
58. M. Du et al., J. Appl. Phys., Vol. 85, pp. 1496-1500 (1999).
59. G. Headt, A. Mcteer and S. Meikle, Semiconductor FABTECH, 11th edition, p. 257 (2000).
60. M. Fayolle et al., Microelectronic Engineering, Vol. 60, pp. 59-69 (2002).
61. Victor Ku et al., J. Vac. Sci. Technol., B 17(5), pp. 2306-2310 (1999).
62. P. Jiang et al., J. Vac. Sci. Technol., A 19(4), pp. 1388-1391 (2001).
63. T. E. F. M. Standaert et al., J. Vac. Sci. Technol., A 19(2), pp. 435-438 (2000).
64. T. E. F. M. Standaert et al., J. Vac. Sci. Technol., A, Vol. 17, No. 3, pp. 742-748 (1999).
65. Steven A. Vitale et al., J. Vac. Sci. Technol., A 18(6), pp. 2770-2774 (2000).
66. S. Vanhaelemeersch et al., Proc. International Interconnect Technol. Conf. (IEEE), pp. 32-35 (1999).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top