跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖志偉
研究生(外文):Liao Chih-Wei
論文名稱:合成含芴基團發光材料及其光電性質研究
論文名稱(外文):Synthesis and Electro-Optical Properties of Fluorene Based Light Emitting Materials
指導教授:許千樹
指導教授(外文):Hsu Chain-Shu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:92
中文關鍵詞:有機發光二極體聚芴
外文關鍵詞:fluoreneorganic light emitting diodepolyfluorene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的在於合成以fluorene為基礎的發光材料及其在光電上的應用。本研究所合成的發光材料共分高分子P1∼P3及小分子O1,這P1~P3皆以Suzuki coupling方式聚合,在熱性質表現方面以P3最佳,其Td超過450℃且Tg達185℃,隨著溶劑極性的變化這四個材料的PL也隨之改變,P1、P2及O1因主鏈上極性雜原子與較高極性的溶劑之dipole-dipole interaction的影響,故其PL在THF溶液中會較在Toluene溶液中紅位移,而P3因主鏈皆為碳原子所組成,故dipole-dipole interaction較不明顯而是以與含芳香環溶劑間的π- stacking interaction為主要作用力,所以PL表現與其他三個材料相反,一般而言,薄膜的PL會較溶液紅位移,但O1在THF溶液中的PL卻明顯較薄膜紅位移。
P1與O1因共軛長度相同故其能隙相同,但其HOMO位置卻明顯不一樣,P1的HOMO為 —5.35 eV,O1的HOMO為 -4.91 eV,P1與P2在主鏈上分別導入氮原子及硫原子,這使得這兩個材料的光色、元件效率有著明顯不同,P1的EL因堆疊作用造成在650nm ∼700nm間有一波峰出現造成光顏色的改變,此一現像可藉由與PVK摻混而獲得改善,而P3為一藍綠光材料,其發光效率可藉由tbftb的加入而提升。

The goal of this research is to study the synthesis and the application of the light emitting materials based on fluorene. The light emitting materials of this research are divided into two components. The one is polymer P1 ~ P3, another is small molecular O1. Polymers P1 ~ P3 are polymerization by Suzuki coupling. On the thermal properties, P3 is the best because it’s Td is over 450 ℃ and Tg is as high as 185 ℃. PL of theses materials will change as the polarity of the solvent. PL of theses materials except P3 in THF solution is more red-shift than in toluene solution because dipole-dipole interaction is the dominated force between heteroatoms on the main chain and more polar solution. The main chain of P3 consists of carbon atom. Dipole-dipole interaction become minor force. The π- stacking interaction between P3 and aromatic solvent is dorminated force. Thus, PL of P3 in toluene solution is more red-shift than in THF solution. In general, PL of the state of the film is red-shift than PL of the state of the solution, but O1 is red-shift in THF solution than in the state of the film.
Because the conjugated length of P1 is the same as O1, their energy gap are equal.But their HOMO level are not the same. The HOMO level of P1 is — 5.35 eV. The HOMO level of O1 is — 4.91 eV. The nitrogen atom and the sulfur atom on the main chian of P1 and P2 resulted in the different color of light and performance of their devices. Because of aggregation EL of P1 had the appearance of a peak during 650 nm ~ 700 nm. The phenomenon can be improved by P1 blending with PVK. P3 is the materials that can produce blue-green light. It’s efficiency can be promoted by adding tbftb into P3.

審定書
授權書
中文摘要------------------------------------------------------Ⅰ
英文摘要------------------------------------------------------Ⅱ
謝誌----------------------------------------------------------Ⅳ
目錄----------------------------------------------------------Ⅴ
Scheme目錄----------------------------------------------------Ⅶ
Table目錄-----------------------------------------------------Ⅶ
Figure目錄----------------------------------------------------Ⅶ
第一章 緒論----------------------------------------------------1
1.1 有機電激發光簡介-------------------------------------------1
1.1.1 有機電激發光的起源---------------------------------------1
1.1.2 電激發光原理與高分子發光二極體---------------------------3
1.1.2.1 電激發光原理-------------------------------------------3
1.1.2.2 電極的選擇---------------------------------------------6
1.1.2.3 雙層與多層結構之元件介紹-------------------------------9
1.1.2.4高分子發光二極體材料簡介-------------------------------11
1.2文獻回顧---------------------------------------------------13
1.2.1 polyfluorene 被使用的背景-------------------------------13
1.2.2 polyfluorene的合成方法----------------------------------14
1.2.3 polyfluorene材料介紹------------------------------------15
1.3 研究動機與分子設計----------------------------------------18
第二章 實驗部份-----------------------------------------------20
2.1 試藥------------------------------------------------------20
2.2測試儀器---------------------------------------------------20
2.2.1 核磁共振光譜儀( Nuclear Magnetic Resonance,NMR )-------20
2.2.2 微差掃描卡計( Differential Scanning Calorimeter,DSC )--20
2.2.3 熱重分析儀( Thermal Gravimetric Analyzer,TGA )---------21
2.2.4 凝膠滲透層析儀( Gel Permeation Chromatography,GPC )----21
2.2.5 紫外線與可見光譜儀 ( UV-Vis Spectrophotometer )---------21
2.2.6 螢光光譜儀 ( Luminescence Spectrophotometer ) ----------21
2.2.7 循環伏安計量儀( Cyclic Voltammetry,CV )----------------21
2.2.8 LED元件性質的量測---------------------------------------22
2.3合成-------------------------------------------------------22
2.3.1單體1M~5M的合成------------------------------------------22
2.3.2 高分子P1~P3的聚合---------------------------------------27
2.4元件的製作-------------------------------------------------28
2.4.1 ITO pattern的製作---------------------------------------28
2.4.2 ITO玻璃的清洗流程---------------------------------------29
2.4.3 元件的建構----------------------------------------------30
第三章 結果與討論---------------------------------------------35
3.1結構鑑定---------------------------------------------------35
3.1.1 單體M1∼M5的結構鑑定------------------------------------35
3.1.2 小分子O1的結構鑑定--------------------------------------37
3.1.3 高分子P1∼P3的聚合及其結構鑑定--------------------------37
3.1.3.1 高分子P1∼P3的聚合------------------------------------37
3.1.3.2 高分子P1∼P3的結構鑑定--------------------------------39
3.2 熱性質分析------------------------------------------------39
3.3 光譜性質分析----------------------------------------------64
3.3.1 UV-Visible 吸收光譜分析---------------------------------64
3.3.2 循環伏安計量(Cyclic voltammetry)分析--------------------66
3.3.3 螢光(Fluorescence)光譜分析------------------------------71
3.4 O1的光聚合探討--------------------------------------------74
3.5 元件性質研究----------------------------------------------76
第四章 結論---------------------------------------------------86
第五章 參考文獻-----------------------------------------------88

1. Bernanose, E.; Comte, M.; Vouaux, P. J. Chim. Phys. 1953, 50, 64
2. Bernanose, E.; Vouaux, P. J. Chim. Phys. 1953, 50, 261.
3. Bernanose, E. J. Chim. Phys. 1955, 52, 396.
4. Bernanose, E.; Vouaux, P.; J. Chim. Phys. 1955, 52, 509
5. Gurnee, E.; Fernandez, R. US Patent 3 172 862, 1965.
6. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
7. Helfrich, W.; Schneider, W. G. J. Chem. Phys. 1966, 44, 2902.
8. Roberts, G. G.; McGinnity, M. M.; Barlow, W. A.; Vincett, P. S. Solid State Commun. 1979, 32, 683.
9. Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G. Thin Solid Films 1982, 94, 171.
10. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
11. Patridge, R. H. Polymer 1983, 24, 733.
12. Burrouhted, J. H.; Bradley, D. D. C.; Brown, A. R.; Mackay, R. N.; Friend, R. H.; Burns, P. L.; Homes, A. B. Nature 1990, 347, 539.
13. Braun, D.; Heeger, A. Appl. Phys. Lett. 1991, 58, 1982.
14. Chen, C. H.; Shi, J.; Tang, C. W. Macromol. Symp. 1997, 125, 1.
15. Dresner, J. RCA Rev. 1969, 30, 332.
16. Brutting, W.; Buchwald, E.; Rgerer, G.; Meier, M.; Zuleeg, K.; Schwoerer,M. Synth. Met. 1997, 84, 677.
17.Choong, V. E.;Hsieh, B. R.;Tang, C. W.; Park, Y.;Gao, Y. Macromol. Symp.1997, 125, 83.
18. Hung , L.S. et al. Appl. Phys, Lett. 1997, 70, 152
19. Jabbour, G.E. et al. Appl. Phys, Lett. 1997, 71, 1762
20. Jabbour, G.E. et al. Appl. Phys, Lett. 1998, 73, 1185
21. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1988, 55, 1489.
22. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. 1988, 27, L269.
23. Adachi, C.; Tsutsui, T.; Saito, S. Jpn, J. Appl. Phys. 1988, 27, L713.
24. Kido, J. Bull. Electrochem. 1994, 10, 1.
25. Kido, J.; Kimura, M.; Nagi, K. Science 1995, 267, 1332.
26. Cao, G. Y.; Treacy G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1993, 357, 111.
27. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402.
28. Hwang, D. H.; Kim, S. T.; Li, X. C.; Chuah, B. S.; DeMello, J. C.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Abstr. Pap. Am. Chem. S. 1997, 213, 319.
29. Koch, F.; Heitz, W. Macromol. Chem. Phys. 1997, 198, 1531.
30. Pfeiffer, S.; Horhold, H. H. Macromol. Chem. Phys. 1997, 200, 1870.
31. Sarnecki, G. J.; Brun, P. L.; Kraft, A.; Reiend, R. H.; Holmes, A. B. Synth. Met. 1993, 55, 91.
32. Hoger, F. W. S.; Zhang, C.; Pakbz, K.; Heeger, A. J. Polym. Prepr. 1993, 34, 197.
33. Gurge, R. M.; Sarker, A.; Lathti, P. M.; Hu, B.; Karasz, F. E. Macromolecules 1996, 29, 4287.
34. Gowri, R.; Mandal, D.; Shivkumar, B.; RamaKrishnan, S. Macromolecules 1998, 31, 1819.
35. Leclerc, M.; Diaz, F. M.; Wegner, G. MaKromol. Chem. 1989, 190, 3105.
36. Mao, H.; Holdcroft, S. Macromolecules 1992, 25, 554.
37. Gill, R. E.; Malliaras, G. G.; Wildeman, J.; Hadziioannou, G. Adv. Mater. 1994, 6, 132.
38. Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.; Andwersson, M. R.; Hjertberg, T.; Wennerstorm, O. Nature 1994, 372, 444.
39. Andwersson, M. R.; Berggren, M.; Inganas, O.; Gustafsson, G.; Gustafesson-Carlberg, J. C.; Selse, D.; Hjerberg, T.; Wennerstorm, O. Macromolecules 1995, 28, 7525.
40. Miyazki, Y.; Yamamoto, T. Chem. Lett. 1994, 41.
41. Berggren, M.; Gustafsson, G.; Inganas, O.; Andwersson, M. R.; Hjerberg, T.; Wennerstorm, O. J. Appl. Phys. 1994, 76, 7530.
42. Yangf, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 79, 934.
43. Uchida, M.; Ohmori, Y.; orishima, C. M.; Yoshino, K. Synth. Met. 1993, 57, 4168.
44. Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
45. Grell, M.; Bradley, D.D.C.; Inbasekaran, M.; Woo, E. P. Adv. Mater. 1997, 9, 798.
46. Leclerc, M.; J. Polym. Sci. Part A: Polym. Chem. 2001,39, 2867.
47. Waltman, R. J.; Diaz, A. F.; Bargon, J. J. Electrochem. Soc. 1985, 132, 631.
48. Fukuda, M.; Sawada, K.; Yoshino, K. J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 2465.
49. Pei, Q.; Yang, Y. J. Am. Chem .Soc. 1996, 118, 7416.
50. Miyaura, N.; Suzuki, A. Chem Rev. 1995, 95, 2457.
51. Ranger, M.; Rondeau, D.;Lectrec, M. Macromolecule. 1997, 30, 7686.
52. Ranger, M.;Lectrec, M. J. Chem. Soc. Chem. Commun. 1997, 1597.
53. Yu, W. L.; Cao, Y.; Pei, J.;Huang, W.; Heeger, A. J. Appl. phys lett. 1999, 75, 3270.
54. Yu, W. L.; Pei, J.;Huang, W.; Heeger, A. J. Adv. Material. 2000, 12, 828.
55. Sepas Setayesh et al. J. Am. Chem. Soc. 2001, 123, 946.
56. Lee, J. I.; Hwang, D. H.; Park, H.; Do, L. M.; Chu, H. Y.; Zyung, T.; Miller, R. D. Synthetic Metals. 2000, 111-112, 195.
57. Anne, D. B.; Isabelle, L.; Ye, T.; Marie, D. Chem. Mater. 2000, 12, 1931.
58. Inbasekaran, M.;Wu, W.; Woo, E. P. U.S. Pat. 5,777,070.
59. Liu, B.;Yu, W. L.; Huang, W. 2000, 33, 8945.
60. Pei, J.; Yu, W. L.; Huang, W.; Heeger, A. J. Chem Comm. 2000, 1631.
61. Millard, I. S. Synthetic Metals. 2000, 111-112, 119.
62.Gauthier, S.; Jean, M. J. Communications. 1987, 383.
63. Goodbrand, H. B.; Hu, N. X. J. Org. Chem. 1999, 64, 670.
64. Adam E. A. et al. Chem. Mater. 2002, 14, 1477.
65.Zheng, M.; Bai , F.; Zhu, D. Journal of Photochemistry and Photobiology A: Chemistry. 1998, 116, 143.
66.Kreyenschmidt, M. et al. Macromolecule, 31, 1099.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top