跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張裕煦
研究生(外文):Yu-Hsu Chang
論文名稱:碳與金屬碳化物材料之製備與鑑定
論文名稱(外文):Preparation and Characterization of Carbon and Metal Carbide Materials
指導教授:裘性天
指導教授(外文):Hsin-Tien Chiu
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:75
中文關鍵詞:金屬碳化物化學氣相沉積奈米薄膜粉末
外文關鍵詞:metal carbidecarbonchemical vapor depositionnanothin filmpowder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提供多樣性之合成法,以分子化合物為前驅物,成功地製備薄膜與奈米尺寸之粉末材料。
在第二章節中, 分別以Me3CCH=Ta(CH2CMe3)3 與Me3CN=Ta(CH2CMe3)3 為單源前驅物,利用低壓化學氣相沉積法成長TaC與TaCN薄膜材料。同時,藉由所收集之揮發性副產物,合理地推論與比較前驅物在沉積過程中的反應途徑。
在第三章中,適當的選擇早期過渡金屬氯化物,包含四氯化鈦、四氯化鋯、四氯化鉿、三氯化釩、五氯化鈮與五氯化鉭,分別與正丁基鋰在溶液相中反應,生成含 [金屬-碳] 鍵結之膠態物質,視為金屬碳化物的前驅物。此前驅物經由熱處理,行β-hydrogen elimination 以及reductive elimination反應,即可合成出奈米尺寸之金屬碳化物。
第四章以相同的概念,利用1-chlorobutane 與鈦箔或是微米尺寸的鈦金屬粉末反應,製備奈米尺寸的碳化鈦粉末。1-chlorobutane不僅扮演提來源之角色,碳化金屬。同時也提供氯蝕刻鈦金屬,縮小鈦金屬尺寸。反應中生成TiClx揮發性分子,其中二氯化鈦、三氯化鈦行自身氧化還原反應,再度生成奈米尺寸之鈦金屬粒子與四氯化鈦揮發性分子,參與反應。
在第五章中,依據相同的化學還原方式,也可成功地運用在碳材的合成。六氯苯提供含六碳苯環(C6) 為石墨之基本架構單元,加以鋰金屬還原,進行偶合反應,使得六碳苯環得以偶合堆積成石墨之層狀結構。此石墨材料呈現棒狀外型,與利用鈉金屬還原反應比較,有著極大不同的現象。此碳棒材料平均尺寸為0.3 ´ 5.0微米,同時利用碳十三固態核磁共振儀,偵測類石墨排列與不規則排列之碳比例為1 : 1。
在第六章中,利用低壓化學氣相沉積法,以SiCl3CCl3為前驅物、石英為基材,製備平坦之非晶相碳薄膜。以X光光電子能譜儀鑑定,於773 K沉積的薄膜組成為90 %碳與10 %氯;於1273 K沉積的薄膜組成為100 %碳。在沉積過程當中,以線上紅外線光譜儀偵測出揮發性副產物為四氯化矽、四氯化碳,以及四氯乙烯。當以矽晶片為基材時,薄膜沉積與基材蝕刻同時發生,進而成長出捲曲狀之薄膜。

In this thesis I present several methods to synthesize the nanoparticles and thin films by employing bottom-up concept relied on the chemical reduction of the reagents.
In Chapter 2, we synthesize Me3CCH=Ta(CH2CMe3)3 and Me3CN=Ta(CH2CMe3)3 precursors to deposit thin films by chemical vapor deposition and analyze the thermolysis of the precursors in the reaction. The difference between the nature of these two precursors and the characteristic of the films is discussed in the content.
Syntheses of nano-sized cubic phase early transition metal carbides from metal chlorides and n-butyllithium is represented in Chapter 3. This study has shown that by proper selection of reaction precursors, nBuLi and MClx (M = Ti, Zr, Hf, V, Nb and Ta), transition metal carbides can be prepared at temperatures significantly lower than those employed in the traditional methods. The formation of metal-alkyl bonds takes place in solution and undergoes the β-hydrogen elimination and the reductive elimination after heat treatment.
Furthermore, titanium carbide can be produced by 1-chlorobutane and nanosized titanium powders or foil by employing the similar concept as described in Chapter 4. 1-Chlorobutane not only acts as the carbon source to carbourize the Ti metal but also provides the chlorine atoms to etch the Ti metal into smaller size and generating volatile TiClx molecules. The disproportionation of TiCl2 and TiCl3 provides another growth route of the nano-sized metal powders, with the evolution of TiCl4 vapor. The apparently simple procedure is a complex heterogeneous process combining etching, deposition and carbourization reactions.
In Chapter 5, we take C6Cl6 as the building blocks and Li as the coupling reagent to generate carbon rods with the graphene sheets perpendicular to the longitude direction. The morphology of the rods is very different from that of the nano graphite previous reported employing Na as the reducing agent. The average size was 0.3 * 5 μm. Ratio of the graphite-like and the disordered carbon atoms, determined by solid-state 13C-NMR, was 1 : 1.
In Chapter 6, smooth amorphous carbon films were deposited from SiCl3CCl3 on quartz substrates at 773 — 1273 K by low-pressure chemical vapor deposition using a hot-wall reactor. XPS studies showed that the films grown at 773 K contained 90% C and 10% Cl, while the films grown at 1273 K contained 100% C. SiCl4, CCl4, and Cl2C=CCl2 were detected by on-line FT-IR studies. The extrusion of dichlorocarbene, :CCl2, from SiCl3CCl3 provided the source of carbon in the reaction. On Si substrates, an etching process at the film-substrate interface assisted the lift-off of the films from the substrates. The C films curled and formed rolls.

English abstract Ⅰ
Chinese abstract Ⅲ
Contents of tables and schemes Ⅴ
List of figures Ⅵ
Chapter 1 Introduction 1
Chapter 2 Chemical Vapor Deposition of Tantalum Carbide and Carbonitride Thin Films from Me3CE=Ta(CH2CMe3)3, (E = CH, N) 5
Chapter 3 Syntheses of Nano-Sized Cubic Phase Early Transition Metal Carbides from Metal Chlorides and n-Butyllithium 20
Chapter 4 Nanosizing Titanium into Titanium Carbide by 1-Chlorobutane 29
Chapter 5 Synthesis of One Dimensional Carbon Material with Novel Structure and Morphology 39
Chapter 6 SiCl3CCl3 as a Novel Precursor for Chemical Vapor Deposition of Amorphous Carbon Films 46
Chapter 7 Summary 58

chapter 1
1. Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press Ltd., 1984 and references therein.
2. Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; Goldberg, H. A. Graphite Fibers and Filaments; Springer-Verlag: Berlin, 1988, Vol. 5 of Springer Series in Materials Science and references therein.
3. Bacon, R. J. Appl. Phys. 1960, 31, 283.
4. Kratschmer,W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
5. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
6. Iijima, S. Nature 1991, 354, 56.
7. McLintock, I. S.; Orr, J. C. Chemistry and Physics of Carbon; Walker, P. L., Ed.; Marcel Dekker: New York, 1973; Vol. 11.
8. Schwarzkopf. P.; Kieffer, R.; Leszynski, W.; Benesovsky, F. Refractory Hard Metals : Borides, Carbides, Nitrides and Silicides; MacMillan Co.: New York, 1953.
chapter 2
1. Oyama, S. T. The Chemistry of Transition Metal Carbides and Nitrides; Blackie Academic & Professional: Glasgow, 1996.
2. Schwarzkopf, P.; Kieffer, R.; Leszynski, W.; Benesovsky, F. Refractory Hard Metals: Borides, Carbides, Nitrides and Silicides; MacMillan Co.: New York, 1953.
3. Pierson, H. O. Handbook of Refractor Carbides and Nitrides; Noyes Publications: New Jersey, 1996.
4. Girolami, G. S.; Jensen, J. A.; Pollina, D. M.; Williams, W. S.; Kalogeros, A. E.; Allocca, C. M. J. Am. Chem. Soc. 1987, 109, 1579.
5. Cheon, J.; Rogers, D. M.; Girolami, G. S. J. Am. Chem. Soc. 1997, 119, 6804.
6. Cheon, J.; Dubois, L. H.; Girolami, G. S. J. Am. Chem. Soc. 1997, 119, 6814.
7. Smith, D. C.; Rubiano, R. R.; Healy, M. D.; Springer, R. W. Mat. Res. Soc. Symp. Proc. 1993, 282, 643.
8. Healy, M. D.; Smith, D. C.; Rubiano, R. R.; Elliott, N. E.; Springer, R. W. Chem. Mater. 1994, 6, 448.
9. Rutherford, N. M.; Larson, C. E.; Jackson, R. L. Mater. Res. Soc. Symp. Proc. 1989, 131, 439.
10. Maury, F.; Ossola, F.; Schuster, F. Surf. Coat Technol. 1992, 54/55, 204.
11. Xue, Z.; Caulton, K. G.; Chisholm, M. H. Chem. Mater. 1991, 3, 384.
12. Xue, Z.; Chuang, S.-H.; Caulton, K. G.; Chisholm, M. H. Chem. Mater. 1998, 10, 2365.
13. Chiu, H. -T.; Huang, C. -C. Mater. Lett. 1993, 16, 194.
14. Sugiyama, K.; Pac, S.; Takahashi, Y.; Motojima, S. J. Electrochem. Soc. 1975, 122, 1545.
15. Fix, R. M.; Gordon, R. G.; Hoffman, D. M. Chem. Mater. 1990, 2, 235.
16. Tsai, M. -H.; Sun, S. -C.; Chiu, H.-T.; Tsai C.-E.; Chuang, S.-H. Appl. Phys. Lett. 1995, 67, 1128.
17. Tsai, M.-H.; Sun, S.-C.; Chiu, H.-T.; Chuang, S.-H. Appl. Phys. Lett. 1996, 68, 1412.
18. Crane, E. L.; Chiu, H.-T.; Nuzzo, R. G. J. Phys. Chem. B 2001, 105, 3549.
19. Winter, C. H.; Sheridan, P. H.; Lewkebandara, T. S.; Heeg, M. J.; Proscia, J. W. J. Am. Chem. Soc. 1992, 114, 1095.
20. Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. 1978, 100, 3359.
21. Chang, P.-J. Master Thesis, National Chiao Tung University, Hsinchu, Taiwan, R. O. C., 2000.
22. Chiu, H.-T.; Chuang, S.-H.; Tsai, C.-E.; Lee, G.-H.; Peng, S.-M. Polyhedron 1998, 17, 2187.
23. Powder diffraction file card 35-0801 (TaC). JCPDS: International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081.
24. Ramqvist, L.; Hamrin, K.; Johansson, G.; Gelius, U.; Nordling, C. J. Phys. Chem. Solids 1970, 31, 2669.
25. Gruzalski, G. R.; Zehner, D. M. Phys. Rev. B 1986, 34, 3841.
26. Dua, A. K.; George, V. C. Thin Solid Films 1994, 247, 34.
27. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer: Minnesota, 1992.
28. Jang, T.; Porter, L. M.; Rutsch, G. W. M.; Odekirk, B. Appl. Phys. Lett. 1999, 75, 3956.
29. Comprehensive Organometallic Chemistry; Abel, E. W.; Stone, F. G. A.; Wilkinson, G., Eds.; Pergamon Press Ltd: Oxford, U. K., 1982.
30. Whitmore, F. C.; Porkin, A. H.; Bernstein, H. I.; Wilkins, J. P. J. Am. Chem. Soc. 1941, 63, 124.
31. Anderson, K. H.; Benson, S. W. J. Chem. Phys. 1964, 40, 3747.
32. Powder diffraction file card 32-1283 (TaN). JCPDS: International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081.
33. Sasaki, K.; Noya, A.; Umezawa, T. Jpn. J. Appl. Phys. 1990, 29, 1043.
chapter 3
1 Toth, L. E., in Transition Metal Carbides and Nitrides, Academic Press, New York 1971.
2 Oyama, S. T. in The Chemistry of Transition Metal carbides and Nitrides, Blackie Academic Professional, Glasgow 1996.
3 Pierson, H. O. in Handbook of Refractory Carbides and Nitrides, Noyes Publications, Westwood 1996.
4 Tsai, H. -Y.; Sun, S. -C.; Wang, S. -J. J. Electrochem. Soc. 2000, 147, 2766.
5 Welham, N. J.; Llewellyn, D. J. J. Eur. Ceram. Soc. 1999, 19, 2833.
6 El-Eskandarany, M. S. Metall. Mater. Trans. A 1996, 27, 2374.
7 Welham, N. J. J. Mater. Sci. 1999, 34, 21.
8 Nartowski, A. M.; Parkin, I. P.; Craven, A. J.; MacKenzie, M. Adv. Mater. 1998, 10, 805.
9 Nartowski, A. M.; Parkin, I. P.; MacKenzie, M.; Craven, A. J.; MacLeod, I. J. Mater. Chem. 1999, 9, 1275.
10 Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Deng, B.; Jiang, R.; Qian, Y. T.; Zhou, G. E.; Yang, L. Chem. Lett. 2000, 5, 474.
11 Kapoor, R.; Oyama, S. T. J. Solid State Chem. 1995, 120, 320.
12 Xu, G. -Y.; Huang, Y.; Li, J. -B.; Xie, Z. -P. J. Mater. Sci. Lett. 1999, 18, 827.
13 Preiss, H.; Meyer, B.; Olschewski, C. J. Mater. Sci. 1998, 33, 713.
14 Jiang, Z.; Rhine, W. E. Chem. Mater. 1991, 3, 1132.
15 Dutremez, S.; Gerbier, P.; Guerin, C.; Henner, B.; Merle, P. Adv. Mater. 1998, 10, 465.
16 Kurokawa, Y.; Kobayashi, S.; Suzuki, M.; Shimazaki, M.; Takahashi, M. J. Mater. Res. 1998, 13, 760.
17 Teixeira da Silva, V. L. S.; Ko, E. I.; Schmal, M.; Oyama, S. T. Chem. Mater. 1995, 7, 179.
18 Nelson, J. A.; Wagner, M. J. Chem. Mater. 2002, 14, 1639.
19 Whitesides, G. M.; Gaasch, J. F.; Stedronsky, E. R. J. Am. Chem. Soc. 1972, 94, 5258.
20 Brown, J. M.; Cooley, N. A. Chem. Rev. 1988, 88, 1031.
21 Balazs, A. C.; Johnson, K. H.; Whitesides, G. M. Inorg. Chem. 1982, 21, 2162.
22 Powder diffraction file card 32-1383 (TiC), 35-0784 (ZrC), 39-1491 (HfC),1-1159 (V4C3), 38-1364 (NbC) and 35-0801 (TaC). JCPDS: International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081.
23 Klug, H. P.; Alexander, L. E. in X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials, 2nd edn., John Wiley & Sons, New York 1974.
24 Ihara, H.; Kumashiro, Y.; Itoh, A.; Maeda, K. Jpn. J. Appl. Phys. 1973, 12, 1462.
25 T. Allen, in Particle Size Measurement; Chapman and Hall, London 1990.
chapter 4
1. Oyama, S. T. The Chemistry of Transition Metal Carbides and Nitrides; Blackie Academic & Professional: Glasgow, 1996.
2. Schwarzkopf, P.; Kieffer, R.; Leszynski, W.; Benesovsky, F. Refractory Hard Metals : Borides, Carbides, Nitrides and Silicides; MacMillan Co.: New York, 1953.
3. Pierson, H. O. Handbook of Refractor Carbides and Nitrides; Noyes Publications: New Jersey, 1996.
4. Tsai, H. -Y.; Sun, S. -C.; Wang, S. -J. J. Electrochem. Soc. 2000, 147, 2766.
5. Lee, C. -Y. J. Mater. Syn. Proc. 1998, 6, 49.
6. Hu, J. -Q.; Lu, Q. -Y.; Tang, K. -B.; Deng, B.; Jiang, R.; Qian, Y. -T.; Zhou, G. -E.; Yang, L. Chem. Lett. 2000, 5, 474.
7. Gotoh, Y.; Fujimura, K.; Koike, M.; Ohkoshi, Y.; Nagura, M.; Akamatsu, K.; Deki, S. Mater. Res. Bull. 2001, 36, 2263.
8. Kim, Y. -J.; Chung, H.; Kang, S. -J. L. Composites A 2001, 32, 731.
9. Jiang, Z.; Rhine, W. E. Chem. Mater. 1991, 3, 1132.
10. Dutremez, S.; Gerbier, P.; Guerin, C.; Henner, B.; Merle, P. Adv. Mater. 1998, 10, 465.
11. Kurokawa, Y.; Kobayashi, S.; Suzuki, M.; Shimazaki, M.; Takahashi, M. J. Mater. Res. 1998, 13, 760.
12. Nartowski, A. M.; Parkin, I. P.; Craven, A. J.; MacKenzie, M. Adv. Mater. 1998, 10, 805.
13. Nartowski, A. M.; Parkin, I. P.; MacKenzie, M.; Craven, A. J.; MacLeodb, I. J. Mater. Chem. 1999, 9, 1275.
14. Welham, N. J.; Llewellyn, D. J. J. Eur. Ceram. Soc. 1999, 19, 2833.
15. El-Eskandarany, M. S. Metall. Mater. Trans. A 1996, 27, 2374.
16. Klug, H. P.; Alexander, L. E. X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials, 2nd ed.; John Wiley & Sons: New York, 1974.
17. Powder diffraction file card No. 32-1383. JCPDS: International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081.
18. Ihara, H.; Kumashiro, Y.; Itoh, A.; Maeda, K. Jpn. J. Appl. Phys. 1973, 12, 1462.
19. Ramqvist, L.; Hamrin, K.; Johansson, G.; Fahlman, A.; Nordling, C. J. Phys. Chem. Solids 1969, 30, 1835.
20. Allen, T. Particle Size Measurement; Chapman and Hall: London, 1990.
chapter 5
1. Reynolds, W. N. Chemistry and Physics of Carbon, Vol. 11; Walker, P. L., Eds.; Marcel Dekker: New York, 1973.
2. McLintock, I. S.; Orr, J. C. Chemistry and Physics of Carbon, Vol. 11; Walker, P. L., Eds.; Marcel Dekker: New York, 1973.
3. Kelly, B. T. Physics of Graphite; Applied Science Publishers: London, 1988.
4. Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; Goldberg, H. A. Graphite Fibers and Filaments; Springer-Verlag: Berlin, 1988, Vol. 5 of Springer Series in Materials Science and references therein.
5. Iley, R.; Riley, H. L. J. Chem. Soc. 1948, 1362.
6. Bacon, R. J. Appl. Phys. 1960, 31, 283.
7. Kratschmer,W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
8. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
9. Iijima, S. Nature 1991, 354, 56.
10. Lee, C. -Y.; Chiu, H. -T.; Peng, C. -W.; Yen, M. -Y.; Chang, Y. -H.; Liu, C. -S. Adv. Mater. 2001, 13. 1105.
11. Iijima, S. Chem. Scripta 1979, 14, 117.
12. Hayashi, T.; Endo, M.; Dresselhaus, M. S. Appl. Phys. Lett. 2000, 77, 1141.
13. Darmstadt, H.; Roy, C.; Kaliaguine, S.; Xu, G.; Auger, M.; Tuel, A.; Ramaswamy, V. Carbon, 2000, 38, 1279.
14. Nemanich, R. J.; Solin, S. A. Phys. Rev. B 1979, 20, 392.
15. Papirer, E.; Lacroix, R.; Donnet, J.-B.; Nansè, G.; Fioux, P. Carbon, 1995, 33, 63.
16. Comprehensive Organometallic Chemistry; Abel, E. W.; Stone, F. G. A.; Wilkinson, G., Eds.; Pergamon Press Ltd: Oxford, U. K., 1982; Vol. 1.
chapter 6
1. Reynolds, W. N. Chemistry and Physics of Carbon; Walker, P. L., Ed.; Marcel Dekker: New York, 1973; Vol. 11.
2. Noda, T.; Inagaki, M,; Yamaha, Y. J. Non-Crystalline Solids 1969, 1, 285.
3. Kelly, B. T. Physics of Graphite; Applied Science Publishers: London, 1981.
4. McLintock, I. S.; Orr, J. C. Chemistry and Physics of Carbon; Walker, P. L., Ed.; Marcel Dekker: New York, 1973; Vol. 11.
5. Anderson, D. A. Phil. Mag. 1977, 35, 17.
6. Yu, H. A.; Kaneko, Y.; Yoshimura, S. Doerr, H. J.; Bunshah, R. F. Appl. Phys. Lett. 1996, 68, 547.
7. Yu, H. A.; Kaneko, T.; Otani, S.; Sasaki, Y.; Yoshimura, S. Carbon 1998, 36, 137.
8. Talin, A. A.; Pan, L. S.; McCarty, K. F.; Felter, T. E. Appl. Phys. Lett. 1996, 69, 3842.
9. Zhu, W.; Kochanski, G. P.; Jin S. Science 1998, 282, 1471.
10. Cui, J. B.; Robertson, J.; Milne, W. I. Diamond Relat. Mater. 2001, 10, 868.
11. Robertson, J. Adv. Phys. 1986, 35, 317 and references therein.
12. Yudasaka, M.; Kikuchi, R.; Matsui, T.; Ohki, Y.; Yoshimura, S.; Ota, E. Appl. Phys. Lett. 1994, 65, 46.
13. Hong, F. C.-N.; Liang G.-T.; Wu, J.-J.; Chang, D.; Hsieh, J.-C. Appl. Phys. Lett. 1993, 63, 3149.
14. Horii, N.; Suzuki, N.; Itoh, K.-I.; Kotaki, T.; Matsumoto, O. Diamond Relat. Mater. 1997, 6, 1874.
15. Hukka, T. I.; Zhang, J. J. Phys. Chem. B 2000, 104, 7115.
16. Janai, M.; Aftergood, S.; Weil, R. B.; Pratt, B. J. Electrochem. Soc. 1981, 128, 2660.
17. Zhang, Y. F.; Tang, Y. H.; Lam, C.; Wang, N.; Lee, C. S.; Bello, I.; Lee, S. T. J. Cryst. Growth 2000, 212, 115.
18. Wu, Y.; Yang, P. Chem. Mater. 2000, 12, 605.
19. Shapiro J. S.; Lossing, F. P. J. Phys. Chem. 1968, 72, 1552.
20. Bock, H.; Solouki, B.; Maier, G. Angew. Chem. Int. Ed. Engl. 1985, 24, 205.
21. CRC Handbook of Chemistry and Physics, 1st Student ed.; Weast, R. C., Ed.; CRC Press: Boca Raton, FL, 1988.
22. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer: Minnesoda, 1992.
23. Nemanich, R. J.; Solin, S. A. Phys. Rev. B 1979, 20, 392.
24. Sattel, S.; Robertson, J.; Ehrhardt, H. J. Appl. Phys. 1997, 82, 4566.
25. Tamaki, K.; Nakamura, Y.; Watanabe, Y.; Hirayama, S. J. Mater. Res. 1995, 10, 431.
26. Moore, A. W. Chemistry and Physics of Carbon; Walker, P. L., Ed.; Marcel Dekker: New York, 1973; Vol. 11.
27. Fink, J.; Muller-Heinzerling, T.; Pfluger, J.; Bubenzer, A.; Koidl, P.; Crecelius, G. Solid State Commun. 1983, 47, 887.
28. Weidenbruch, M; Pierrard, C. Chem. Ber. 1977, 110, 1545.
29. Shimanouchi, T. Tables of Molecular Vibrational Frequencies Consolidated Vo. I, National Bureau of Standards, 1972, 1-160.
30. National Institute of Standards and Technology Standard Reference Database, http://webbook.nist.gov/chemistry.
31. Swift, F.,Jr.; Sung R. L.; Doyle, J.; Stille, L. K. J. Org. Chem. 1965, 30, 3114.
32. Wescott, L. D.; Skell, P. S. J. Am. Chem. Soc. 1965, 87, 1721.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 周淑卿(民84)。美國公元2000年教育目標法案。教育研究資訊雙月刊,3卷3期,頁 143--147。
2. 吳清山(民85)。共創學校與家長會雙贏局面。北縣教育13期,頁14--19。
3. 林振春(民85)。社區時代中家長會的角色與任務。社教雙月刊,85年6月號,頁40。
4. 黃明哲(民85)。學校家長社區的新親密關係。北縣教育13期,頁31--35。
5. 張家麟(民87)。學校組織再造之家長會功能分析。北縣教育24期,頁69--71。
6. 王秀雲(民86)。健全家長會功能以協助校務發展。北縣教育17期,頁50。
7. 陳喬木(民85)。為孩童搭起教育的橋樑。北縣教育13期,頁25─30。
8. 徐慶勳(民79)。有其學校必有其校長─國民小學校長角色期望與角色行為差距之研究。 國教之友,42卷2期,49─52頁。
9. 周愫嫻(民85)。家長會與學校的對話關係。北縣教育13期,頁20--24。
10. 林明地(民88)。家長參與學校教育的研究與實際:對教育改革的啟示。教育研究資訊, 7卷2期,頁61─69。
11. 林文律(民88)。學校行政:理想與實際。學校行政雙月刊,第6期,頁24--37。
12. 沈水木(民84)。國小家長會對校務發展之影響。研習資訊,12卷2期,頁63--67。
13. 吳清山(民83)。有興趣大家一起來─談美國家長會組織。國立教育資料館館訊,27期, 頁6--9。
14. 朱崑中(民85)。家長會的新定位。北縣教育13期,頁36-38。
15. 鄭英敏(民78)。我國省市學校家長會組織與功能的比較分析。教師天地,40期,頁10-- 14。