(54.236.58.220) 您好!臺灣時間:2021/03/09 16:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳賢修
研究生(外文):Chen Shyan Shiou
論文名稱:離散型神經網路的動態行為
論文名稱(外文):Dynamics in Discrete-Time Neural Networks
指導教授:石至文
指導教授(外文):Shih Chih Wen
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:87
中文關鍵詞:類神經網路猛然回來的不隱定點橫過的自連軌跡
外文關鍵詞:neural networksnap-back repellertransversal homoclinic orbit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文分成三個部份。第一個部份研究 Transiently Chaotic Neural Network (TCNN) 系統中 Transversal Homoclinic Orbit 的存在性。第二個部份利用 Lyapunov function 來研究 TCNN 的穩定性。最後一個是研究 Discrete-Time Cellular Neural Networks (DT-CNN) 的混沌現象和穩定行為。這些定性的分析與研究有助於了解各別系統可能發生的行為。
My dissertation contains three parts. The subtitle of Part I is
''Transversal Homoclinic Orbits in a Transiently Chaotic Neural Network". Transiently chaotic neural network (TCNN) was proposed by Chen and Aihara~\cite{Aihara&Chen1995Chaotic}. We prove the existence of snap-back repellers in some parameters for TCNN. And, we generalize the result on the existence of
a Lyapunov function for TCNN with the constant self-feedback connection weight from symmetric connection weights to cycle-symmetric ones. The Part II is entitled ''Asymptotic Behaviors in a Transiently Chaotic Neural Network". We prove an extended version of LaSalle''s invariance principle for non-autonomous difference equations. Then, we apply the LaSalle''s invariance principle to TCNN with cycle symmetric connection. The subtitle of Part III is ''Dynamics for Discrete-Time Cellular Neural Networks".
Abstract i
1 Introduction...........................................1
1.1 Motivation.............................................1
1.2 Preliminary............................................2
2 Transversal Homoclinic Orbits in a Transiently Chaotic Neural Network.............................................6
2.1 Introduction ..........................................6
2.2 Illustrations of Snap-back Repellers for TCNN..........9
2.3 Basic Lemmas and the One-dimensional TCNN.............14
2.4 Snap-Back Repellers for TCNN..........................23
2.5 Asymptotic Convergence for TCNN.......................29
2.6 Numerical Illustrations...............................32
2.7 Conclusions...........................................35
2.8 Appendices............................................35
3 Asymptotic Behaviors in a Transiently Chaotic Neural Network...................................................39
3.1 Introduction..........................................39
3.2 LaSalle''s Invariance Principle for Non-autonomous Systems...................................................41
3.3 Lyapunov Function for TCNN............................44
3.4 Asymptotic Behaviors for TCNN.........................49
3.5 TCNN with Cyclic Updating Mode........................52
3.6 Conclusions...........................................56
4 Dynamics for Discrete-Time Cellular Neural Networks...57
4.1 Introduction..........................................57
4.2 Dynamics of the DT-CNN................................59
4.2.1 Complete stability..................................60
4.2.2 Illustrations of chaotic dynamics...................65
4.3 Verifications for the Dynamics of DT-CNN..............69
4.3.1 Complete Stability..................................69
4.3.2 Chaotic Behaviors...................................72
4.3.3 Numerical illustrations.............................80
4.4 Local and Global Saturated Patterns of DT-CNN.........81
L.~Chen and K.~Aihara, ''Chaotic simulated annealing by a neural network model with transient chaos,'''' {\em Neural Networks}, vol.~8, pp.~915--930, 1995.
M.~A. Cohen and S.~Grossberg, ''Absolute stability of global pattern formulation and parallel memory storage by competitive neural networks,''''{\em IEEE Trans. Syst. Man Cybernet. SMC-13}, pp.~815--826, 1983.
J.~Hopfield, ''Neurons with graded response have collective computational properties like those of two-state neurons,'''' {\em Proc. Natl. Acad. Sci.}, vol.~81, pp.~3088--3092, 1984.
J.~Hopfield and D.~Tank, ''Neural computation of decisions in optimization problems,'''' {\em Biol. Cybernet.}, vol.~52, pp.~141--152, 1985.
C.~Peterson and J.~R. Anderson, ''A mean field theory algorithm for neural networks,'''' {\em Complex Syst.}, vol.~1, pp.~995--1019, 1989.
C.~Peterson and B.~S{\"{o}}derberg, ''Artificial neural networks,'''' in {\em Modern Heuristic Techniques for Combinatorial Optimization} (C.~Reeves, ed.), pp.~197--242, Oxford, England: Blackwell Scientific Publishing, 1993.
L.~Chen and K.~Aihara, ''Global searching ability of chaotic neural networks,''''{\em IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications}, vol.~46, pp.~974--993, 1999.
N.~Hiroshi, ''A neural network model as a globally coupled map and applicaionts based on chaos,'''' {\em Chaos}, vol.~2, pp.~377--386, 1992.
T.~Yamada, K.~Aihara, and M.~Kotani, ''Chaotic neural networks and the traveling salesman problem,'''' {\em Proc. IJCNN''93 NAGOYA}, vol.~2, pp.~1549--1552, 1993.
T.~Y. Li and J.~A. Yorke, ''Period three implies chaos,'''' {\em Amer. Math. Monthly}, vol.~82, pp.~985--992, 1975.
F.~R. Marotto, ''Snap-back repellers imply chaos in $\mathbb{R}^n$,'''' {\em J. Math. Anal. Appl.}, vol.~63, pp.~199--223, 1978.
J.~P. LaSalle, ''The stability of dynamical systems,'''' in {\em Regional Conference Series in Applied Mathematics}, vol.~25, Philadelphia: SIAM, 1976.
L.~Chen and K.~Aihara, ''Chaos and asymptotical stability in discrete-time neural networks,'''' {\em Physica D}, vol.~104, pp.~286--325, 1997.
G.~Chen, S.~B. Hsu, and J.~Zhou, ''Snap-back repellers as a cause of chaotic vibration of the wave equation with a van der pol boundary condition and energy injection at the middle of the span,'''' {\em J. Math. Phys.}, vol.~39, pp.~6459--6489, 1998.
F.~R. Marotto, ''Perturbations of stable and chaotic difference equations,'''' {\em J. Math. Anal. Appl.}, vol.~132, pp.~716--729, 1996.
F.~R. Marotto, ''Chaotic behaviors in the h{\''{e}}non apping,'''' {\em Comm. Math. Phys.}, vol.~68, pp.~187--194, 1979.
K.~Meyer and X.~Zhang, ''Stability of skew dynamical systems,'''' {\em J. Differential Equations}, vol.~132, pp.~66--86, 1996.
C.~W. Shih and C.~W. Weng, ''Cycle-symmetric matrices and convergent neural networks,'''' {\em Physica D}, vol.~146, pp.~213--220, 2000.
B.~Fiedler and T.~Gedeon, ''A class of convergent neural network dynamics,'''' {\em Physica D}, vol.~111, pp.~288--294, 1998.
C.~H. Hsu, J.~Juang, S.~S. Lin, and W.~W. Lin, ''Convergence in neural nets,''''{\em Proceedings of the IEEE International Joint Conference on Neural Networks}, vol.~2, pp.~115--125, 1987.
S.~S. Lin and C.~W. Shih, ''Complete stability for standard cellular neural networks,'''' {\em Int. J. Bifur. Chaos}, vol.~9, no.~5, pp.~909--918, 1999.
C.~W. Shih, ''Complete stability for a class of cellular networks,'''' {\em Int. J. Bifur. Chaos}, vol.~11, no.~1, pp.~169--177, 2001.
M.~W. Hirsch, ''Convergence in neural nets,'''' in {\em Proceedings of the IEEE International Joint Conference on Neural Networks} (M.~Caudill and C.~Butler, eds.), vol.~2, (San Diego), pp.~115--125, 1987.
J.~Hale and G.~Raugel, ''Convergence in gradient-like systems with applications to pde,'''' {\em ZAMP}, vol.~43, pp.~63--124, 1992.
C.~W. Shih, ''Influence of boundary conditions on pattern formation and spatial chaos in lattice systems,'''' {\em SIAM J. Appl. Math.}, vol.~61, no.~1, pp.~335--368, 2000.
M.~H{\"{a}}nggi, H.~C. Reddy, and G.~S. Moschytz, ''Unifying results in cnn theory using delta operator,'''' {\em IEEE international Symposium On Circuits And Systems}, vol.~3, pp.~547--550, 1999.
H.~Harrer and J.~A. Nossek, ''An analog implementation of discrete-time cnns,''''{\em IEEE Transactions on Neural Networks}, vol.~3, 1992.
C.~W. Shih and C.~W. Weng, ''On the templates corresponding to cycle-symmetric connectivity in cellular neural networks,'''' {\em Int. J. Bifur. Chaos}, to appear.
S.~S. Chen and C.~W. Shih, ''Transversal homoclinic orbits in a transiently chaotic neural network,'''' {\em accepted}, 2002.
J.~Juang and S.~S. Lin, ''Cellular neural networks: mosaic patterns and spatial chaos,'''' {\em SIAM Appli. Math.}, vol.~60, no.~3, pp.~891--915, 2000.
C.~W. Shih, ''Pattern formation and spatial chaos in cellular neural networks with asymmetric templates,'''' {\em Int. J. Bifur. Chaos}, vol.~8, no.~10, pp.~1907--1936, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔