(3.238.7.202) 您好!臺灣時間:2021/03/03 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林伯鴻
研究生(外文):Po-Hung Lin
論文名稱:量子撞球檯的數值方法
論文名稱(外文):Numerical Methods for Quantum Billiards
指導教授:劉晉良劉晉良引用關係
指導教授(外文):Jinn-Liang Liu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:52
中文關鍵詞:量子檯雅各大衛森有限差分法壓縮
外文關鍵詞:quantum billiardJacobi-Davidsonfinite difference methoddeflated
相關次數:
  • 被引用被引用:0
  • 點閱點閱:368
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
緊密封閉的撞球檯在古典的和量子力學的領域裡有長服務的原型系統。 許多有趣的結果在能量統計數值和波函數的密度分佈上已經被獲得了。 我們研究量子撞球檯的特徵態, 把圓盤和體育場的撞球檯以特徵問題陳述。 為了使赫爾蒙茲(Helmholtz)方程式離散化, 我們用一半移動的格子點把非均勻的網格用於輻射狀方向。 我們用雅各大衛森(Jacobi—Davidson) 方法來解決這些特徵值問題。 為計算這些連續特徵值, 我們使用具有最新低等級的一個新穎清晰明確非等值(義)的壓縮技術。

Closed billiards have long served as prototype systems in the field of classical and quantum dynamics. Many interesting results on statistics of energy and the density distribution of the wave function have been obtained. We study eigenstates of quantum billiards in the eigenproblem representation for the disk and stadium billiard. To discretize the Helmholtz equation, we use non-uniform meshes with half-shifted grid points in the radial direction. We use Jacobi-Davidson to solve these eigenproblems. For computing the successive eigenvalues, we use a novel explicit non-equivalence deflation technique with low-rank updates.

1 Introduction 2
1.1 Quantum Chaology......................................2
1.2 Brief history of the quantum billiard eigenproblem....3
1.3 Definition of the billiard problem....................5
2 Disk-model problem 8
2.1 Finite difference discretization.......................8
2.2 Rational matrix........................................9
3 Stadium-model problem 11
3.1 Finite difference discretization.......................11
3.2 Rational matrix........................................12
4 Determining the smallest positive eigenvalue 15
5 Non-equivalence deflation 18
6 Numerical results 22
6.1 Disk model results.....................................24
6.2 Stadium model results..................................30
7 Conclusion 44
Appendix A 45
Appendix B 47
References 49

[1] A. Bäcker and R. Schubert, Chaotic eigenfunctions in momentum space, J. Phys. A 32 (1999), 4795-4815.
[2] A. H. Barnett, Dissipation in Deforming Chaotic Billiards, Harvard Uni-versity 2000_10.
[3] Sz. Bauch, A. Bledowski, L. Sirko, P.M. Koch, and R. Blümel, Signature of non-Newtonian orbits in ray-splitting cavities, Phys. Rev. E (accepted for publication, 1997).
[4] M. V. Berry, Quantizing a classically ergodic system: Sinai billiard and the KKR method, Ann. Phys., 131:163-216, 1981.
[5] M. V. Berry and M. Wilkinson, Diabolical points in the spectra of trian-gles, Proc. Roy. Soc. London A, 392:15, 1984.
[6] P. A. Boasman, Nonlinearity, 7:485, 1994.
[7] E. B. Bogomolny, Nonlinearity, 5:805-866, 1992.
[8] A. Bulgac and P. Magierski, Eigenstates for billiards of arbitrary shapes, preprint physics/9902057, 1999.
[9] G. Casati and B.V. Chirikov, Eds., Quantum Chaos: Between Order and Disorder (Cambridge Univ. Press, 1995).
[10] Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. phys. 102 (1985), 497-502.
[11] P. J. Davis, Circulant matrices, A Wiley-Interscience publication, Canada, 1979.
[12] S. Deus, P.M. Koch, and L. Sirko, Statistical properties of the eigenfre-quency distribution of three-dimensional microwave cavities, Phys. Rev. E 52, 1146 (1995).
[13] E. Doron and U. Smilansky, Semiclassical quantization of chaotic billiards- -a scattering theory approach. Nonlinearity, 5:1055-1084, 1992.
[14] H. Eisen and W. Heinrichs and K. Witsch, Spectral collocation meth-ods and polar coordinate singularities. J. Comput. phys., 96(2):241-257, 1991.
[15] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The John Hopkins University Press, Baltimore, London, 1996.
[16] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Berlin, 1991).
[17] F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 1991).
[18] E. J. Heller, Bound state eigenfunctions of classically chaotic hamil-tonian systems: Scars of periodic orbits, Phys. Rev. Lett., 53:1515, 1984.
[19] E. J. Heller, Semiclassical wave packet dynamics and chaos in quantum mechanics, In M. J. Giannoni, A. Voros, and J. Zinn-Justin, editors, Proceedings of the 1989 Les Houches Summer School on “Chaos and Quantum Physics”, pages 547-663, North-Holland, 1991. Elsevier Sci-ence Publishers B.V.
[20] W. Huang and D. M. Sloa, Pole condition for singular problems: the pseudospectral approximation. J. Comput. Phys., 107(2):254-261, 1993.
[21] T. M. Hwang, W. Wang, Analyzing and Visualizing A Discretized Semi-linear Elliptic Problem with Neumann Boundary conditions. Numerical Methods in Partial Di¤erential Equations, NCTS 2001_4.
[22] T. M. Hwang, W. W. Lin, J. L. Liu, and W. Wang, Numerical com-putation of cubic eigenvalue problems for a semiconductor quantum dot model with non-parabolic e¤ ective mass approximation, NCTS Preprints in Mathematics 2001_12.
[23] I. Kosztin and K. Schulten, Intl. J. Mod. Phys., 8:293-325, 1997. preprint physics/9702022.
[24] P. Kurlberg and Z. Rudnick, On quantum unique ergodicity for linear maps of the torus, Commun. Math. Phys. 222 (2001) 1, 201-227.
[25] M. C. Lai, A note on …nite di¤erence discretizations for Poisson equa-tion on a disk. Numerical Methods for Partial Di¤erential Equations. 17(3):199-203, 2001.
[26] B. Li, Phys. Rev. E, 55:5376-79, 1997.
[27] B. Li and B. Hu, J. Phys. A, 31:483-504, 1998.
[28] B. Li and M. Robnik, J. Phys. A, 28:2799, 1995.
[29] B. Li, M. Robnik, and B. Hu, Phys. Rev. E, 57:4095-4105, 1998.
[30] S. W. McDonald and A. N. Kaufman, Phys. Rev. Lett., 42:1189, 1979.
[31] C. C. Paige, B. N. Parlett, and H. A. Van Der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115-133.
[32] H. Primack, Quantal and Semiclassical analysis of the three-dimensional Sinai billiard, PhD thesis, Weizmann Institute, Rehovot, Israel, Septem-ber 1997.
[33] T. Prosen, Physica D, 91:244, 1996.
[34] T. Prosen and M. Robnik, J. Phys. A, 27:8059, 1994.
[35] Jr. R. J. Riddell, Comp. Phys., 31:21-41; 42-59, 1979.
[36] M. Robnik, J. Phys. A, 17:1049, 1984.
[37] A. Schnirelman, Ergodic properties of eigenfunctions, Usp. Math. Nauk 29 (1974), 1814-182.
[38] G. L. G. Sleijpen, A. G. L. Botten, D. R. Fokkema, and H. A. van der Vorst, Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT, 36(3):595-633, 1996.
[39] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Martix Anal. Appl., 17(2):401-425, April 1996.
[40] P. N. Swarztrauber and R. A. Sweet, The direct solution of the discrete Poisson equation on a disk. SIAM J. Numer. Anal., 10:200, 1973.
[41] E. Vergini and M. Saraceno, Calculation by scaling of highly excited states of billiards, Phys. Rev. E, 52:2204-2207, 1995.
[42] S. Zelditch, Uniform distribution of eigenfunctions on compact hyper-bolic surfaces, Duke Math. J. 55 (1987), 919-941.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔