# 臺灣博碩士論文加值系統

(54.161.24.9) 您好！臺灣時間：2022/01/17 11:57

:::

### 詳目顯示

:

• 被引用:0
• 點閱:147
• 評分:
• 下載:9
• 書目收藏:0
 此篇論文主要的目是介紹三種不同的相互連結系統，並考慮四種不同的函數若分別作用在上述系統中的其中一種，則其同步情形為何。
 We consider the lattices of coupling various type of interval maps such as tent map, tent-quadratic map, piecewise cubic map and piecewise quadratic map with the following three types of formulations. We prove that synchronization occurs for the case of 1D lattice with lattice size n = 2, 3,4,5 provided the coupling strength c is chosen in a suitable open interval contained in [0,0.5 ] and show the numerical results about it.
 1 Introduction......................................5 2 Preliminaries.....................................9 3 Tent map.........................................10 4 Piecewise cubic map..............................12 5 Piecewise quadratic map..........................14 6 Tent-quadratic map...............................16 7 Conclusion.......................................18 8 References.......................................18
 [1] A. F. Kleptsyn, V. S. Kozyakin, M. A. Krasnosel’skii, and N. A. Kuzentsov, “E®ectof small synchronization errors on stability of complex system —I,” Automat. RemoteContr. 44 (1983), 861-867.[2] A. F. Kleptsyn, V. S. Kozyakin, M. A. Krasnosel’skii, and N. A. Kuzentsov, “E®ect ofsmall synchronization errors on stability of complex system —II,” Automat. RemoteContr. 45 (1984), 309-314.[3] A. F. Kleptsyn, V. S. Kozyakin, M. A. Krasnosel’skii, and N. A. Kuzentsov, “E®ect ofsmall synchronization errors on stability of complex system —III,” Automat. RemoteContr. 45 (1984), 1014-1018.[4] Afraimovich, V.S. and Bunimovich, L.A. “Simplest structures in coupled mpa latticesand their stabilities,” Random Comut. Dyn. 1 (1993), 423-444.[5] Afraimovich, V.S., Chow, S.-N. and Hale, J.K. “Synchronization in lattices of coupledoscillators,” Physica D 103 (1997), 445-451.[6] Afraimovich, V.S., Chow, S.-N., Verichev, N.N. and Rabinnovich, M.I. “Stochasticsynchronization of oscillations in dissipative systems,” Radio Phys. Quant. Electr.29 (1986), 747-751.[7] Amit Bhaya, Member, IEEE, Eugenius Kaszkurewicz , and Victor S. Kozyakin, “Existenceand Stability of a Unique Equilibrium in Continuous-Valued Discrete-TimeAsynchronous Hopfield Neural Networks,” IEEE Trans. Neural Networks 7 (1996),no. 3, 620-628.[8] Amritkar, R.E., Gade, P.M. and Gangal, A.D. “Stability of periodic orbits of coupledmap lattices,” Phys. Rev. A 44 (6) (1991), 3407-3410.[9] Bunimovich, L.A. “Coupled map lattices: Some topological and ergodic properties,”Physica D 103 (1997), 1-17.[10] Bunimovich, L.A. and Carlen, E.A. “on the problem of stability in lattice dynamicalsystems,” J. Di®. Eq. 123 (1995), 213-229.[11] Campbell, D. “An introduction to nonlinear dynamics,” in Lectures in the Sciencesof Complexity, ed. Stein, D. L., (Addison-Wesley, Reading, MA), 1989.[12] Chow, S.-N. and Shen, W. “Stability and bifurcation of traveling wave solutions incoupled map lattices,” Dynamic syst. Appl. 4 (1995), 1-25.[13] Collet, P. and Eckmann, J.-P. “On the abundance of apperiodic behaviour for mapson the interval,” Comm. Math. Phys. 73 (1980), no. 2, 115-160.[14] Cuomo, K.M. and Oppenheim, A.V. “Synchronized chaotic circuits and systems forcommunications,” Electr. TR. MIT Res. Lab. 1992, p. 575.[15] Cuomo, K.M. avd Oppenheim, A.V. “circuit implementation of synchronized chaos,with applications to communications,” Phys. Rev. Lett. 71 (1993), p. 65.[16] D. P. Bertsekas, and J. N. Tsitsiklis, “Parallel and Distributed Computation-Numerical Methods,” Englewood Cli®s, New Jersey: Prentice-Hall, 1989.[17] E. A. Asarin, V. S. Kozyakin, M. A. Krasnosel’skii and N. A. Kuzentsov, “StabilityAnalysis of Desynchronized Discrete-Event Systems, (in Russian),” Moscow: Nauka,1992.[18] E. Kaszkurewice, A. Bhaya, and D. D. ˘ Siljak, “On the convergence of parallel asynchronousblock-iterative computations,” Lin. Algebra Applicat., 131 (1990), 139-160.[19] Giberti, C. and Vernia, C. “Periodic behavior in 1D and 2D coupled map lattices ofsmall size,” Chaos 4 (1994), 651-664.[20] Gleick, J. “Chaos: Making a New Science (Viking, New York),” 1987.[21] Heagy, J.F., Carroll, T.L. and Pecora, L.M. “Synchronization with application tocommunication,” Phys. Rev. Lett. 74 (25) (1995), 5028-5031.[22] H´enon, M. ”A two-dimensional mapping with a strange attractor,” Commun. Math.Phys. 50 (1976), 69-77.[23] J. J. Hopfield, “Neuronal networks and physical system with emergent collective computationalabilities,” in Proc. Nat. Acad. Sci, 79 (1982), 2554-2558.[24] J. J. Hopfield, “Neurous with graded response have collective computational propertieslike those of two-state neurous,” Proc. Nat. Acad. Sci., 81 (1984), 3088-3092.[25] Kaneko, K., Editor, “Theory and Applications of Coupled Map Lattices,” (Wiley,NewYork), 1993.[26] Lin, W.W., Peng, C.C. andWang, C.S. “Synchronization in coupled map lattices withperiodic boundary condition,” Int. J. Bifurcation and Chaos 9 (8) (1999), 1635-1652.[27] M. Takeda and J. W. Goodman, “Neural networks for computation: Number repesentationsand programmung complexity,” Appl.Opt. 25 (1986) no. 18, 3033-3046.[28] Pecora, L.M., Carroll, T.L. “Synchronization in chaotic systems,” Phys. Rev. Lett.64 (1990), 821-824.[29] Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J. and Heagy, J.F. “Fundamentalsof synchronization in chaotic systems, concept and applications,” Chaos 6 (1997),262-276.[30] Robert L. Devaney, “An introduction to chaotic dynamical systems 2nd ,” 1989.[31] S. Y. Kung, “Digital Neural Networks,” Englewood Cli®s, N.J.: Prentice-Hall, 1993.[32] T. J. Sejnowski, “Open questions about computation in cerebral cortex,” in ParallelDistributed Processing: Explorations in the Microstructure of Cognition, vol. II.Cambridge, MA: MIT Press ,pp. 372-389, 1986.[33] Smith, J. “Mathematical Ideas in Biology,” (Cambridge Press, Cambridge), 1968.[34] Udwadia, Firdaus E. and Guttalu, Ramesh S. “Chaotic dynamics of a piecewise cubicmap,” Phys. Rev. A (3) 40 (1989), no. 7, 4032-4044.[35] V. S. Kozyakin, “Stability of linear desynchronized system with unsymmetric matrices,”Automat. Remote Contr. 52 (1981), 928-933.[36] Vohra, S., Spano, M., Shlesinger, M., Pecora, L. and Ditto, W. “Proceedings of theFirst Experimental Chaos Conference (World Scientific, Singapore),” 1992.[37] Wen-Wei Lin and Yi-Qian Wang “Synchronized chaos in coupled map lattices withperiodic boundary condition,” SIAM Dynam. System. accepted.[38] Wu, C. W. and Chua, L. O. “A unified framework for synchronizations and controlof dynamical systems” Int. J. Bifur. and Chaos 4 (1994), 979-988.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 林樹聲（民88）。科學素養的省思。科學教育月刊，222，16-23。 2 林陳涌、楊榮祥（民87）。利用凱利方格晤談法探究教師對科學本質的觀點─個案研究。科學教育學刊，6（2），113-128。 3 林陳涌（民85）。「瞭解科學本質量表」之發展與效化，科學教育學刊，4（1），1-58。 4 林陳涌（民84b）。從經驗證據和科學理論之間的關係來探討自然科教學的意義，科學教育月刊，第184期，2-16。 5 李宗薇（民83）。教師與教學設計。教學科技與媒體，18，32-34。 6 洪文東（民85）。科學的本質。屏師科學教育，3，2-9。 7 洪文東（民84）。科學教育的目標。屏師科學教育，1，4-11。 8 洪文東（民86）。科學文章的閱讀理解。屏師科學教育，5，14-23。 9 洪振方（民87）。科學教學的另類選擇：融入科學史的教學。屏師科學教育，第七期，2-9。 10 翁秀玉、段曉林（民86a）。科學本質在科學教育上的啟示與做法。科學教育月刊，201，2-15。 11 張世忠（民89）。一堂國中理化科之教學觀察、評論和展望。科學教育月刊，219，2-9。 12 張賴妙理（民87）。科學教師自我評鑑的概念與方法。科學教育月刊，213，2-13。 13 張靜儀（民88）。國小自然科教學表徵的應用實例。屏師科學教育，9，31-35。 14 張鳳琴（民83b）。孔恩---哲學觀與我國科學教育的省思。科學教育月刊，175，8-16。 15 郭重吉、許玫理（民81）。從科學哲學觀點的演變探討科學教育的過去與未來。彰化師範大學學報，3，531-560。

 1 不變測度法估算二維黃金分割的位熵 2 劉孔驪 3 軟硬體介面互動性探討-以行動電話為例 4 互動性線上產品說明書設計之研究─以行動電話為例 5 量子撞球檯的數值方法 6 求解大型二次連續型最佳化控制問題之數值方法 7 以矽膠管與吸收瓶採集無塵室無機酸鹼性氣體之方法比較 8 三層濾紙TDI蒸氣與氣膠同步個人採樣器 9 某半導體廠周界異味來源及控制研究 10 高效率文氏洗滌器之測試研究 11 受限含水層定水頭試驗徑向雙層井緣流量之閉合解 12 基於制水閥區可靠度之自來水管網換管規劃模式 13 溫度及土壤含水率對揮發性有機物於土壤相/氣相間分配係數之影響 14 淨水混凝之快混操作參數決定:去穩機制與聚集動力解析 15 當代數位攝影影像消費的特質與意義－以大頭貼為例

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室