跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林秋蓉
研究生(外文):Chiou-Rong Lin
論文名稱:不變測度法估算二維黃金分割的位熵
論文名稱(外文):On Invariant Measure Approach for Estimating Entropy of the 2-d Golden Mean
指導教授:莊重莊重引用關係
指導教授(外文):Jonq Juang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:29
中文關鍵詞:二維黃金分割二維不變測度法
外文關鍵詞:2-d Invariant MeasureEntropy2-d Golden Mean
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文主要的目的是在創造一種二維的不便測度,並利用此測度來估計二維黃金分割的位熵。

The purpose of this paper aims to is to construct an invariant
measure of 2-d shifts problem for estimating entropy of 2-d golden mean.

Contents
1 Introduction and Related Work 3
2 Preliminaries 5
3 Invariant Measure for 2-d Shifts 10
4 Main Results 23
5 Conclusion 26
6 References 28

[1] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press,
New York and London, 1982.
[2] R. L. Devaney, An Introduction to Chaotic Dynamical Systems 2nd, Addison-
Wesley Publishing Company (1948).
[3] P. W. Kasteleyn, The statistics of dimers on lattice, I. Physica 27 (1961),
1209-1225.
[4] E. H. Lieb, Residual entropy of square ice, Phys. Rev. 162 (1967), 162-172.
[5] R. Mane, Ergodic theory and di®erentrial dynamics, Springer-Verlag (1983).
in Taiwan.
[6] N. G. Markely and M. E. Paul, Maximal measures and entropy for Zº subshifts
of finite type, Collection: Classical mechanics and dynamical systems
(Medford, Mass., 1979), pp.135-157. Dekker, New York, 1981.
[7] N. G. Markely and M. E. Paul, Matrix Subshifts For Zº Symbolic Dynamics,
Proc. London Math. Soc.(3) 43(1981), 251-272.
[8] J. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112, 55-66
(1964).
[9] C. Robinson, Dynamiccal Systems, Stability, Symbolic Dynamics, and Chaos,
CRC Press, London, 1993.
[10] K. Schmidt, Algebraic ideas in ergodic theory (Conference Board Math. Science),
vol76, Trans. Amer. Math. Soc., Prividence, RI, 1990.
[11] Shih-Feng Shieh, One dimensional maps and two dimensional entropy, Ph.
D. dessertation of National Chiao Tung University
[12] H. N. V. Temperley and E. H. Lieb, Relations between the ’percolation’ and
’colouring’ problem and other graph-theoretical problems associated with regular
planner lattices: some exact results for the ’percolation’ problem, Pro.
Roy. Soc. London Ser. A. 322 (1971), 251-280.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top