跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:甘其銓
研究生(外文):Kan Chichuan
論文名稱:淨水混凝之快混操作參數決定:去穩機制與聚集動力解析
論文名稱(外文):Determination of Rapid-Mixing Parameters in Coagulation: Destabilization Mechanisms and Aggregation Kinetics Approach
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Huang Chihpin
學位類別:博士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:144
中文關鍵詞:混凝膠凝快混淨水聚集動力光纖膠羽偵測儀膠羽碎形維度
外文關鍵詞:coagulationflocculationrapid-mixingwater treatmentaggregation kineticPhotometric Dispersion Analyzerflocfractal dimension
相關次數:
  • 被引用被引用:16
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:112
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
混凝/膠凝為淨水程序中廣泛運用於去除水中微粒的的物化程序,混凝可概分為三個階段,首先混凝劑加入水中首先進行一連串的化學反應之後形成有作用性的混凝作用基,接下來混凝劑作用基透過 ”快混”的操作 與水中穩定的微粒接觸,並進行膠體去穩,最後階段為已去穩的膠體微粒進行有效碰撞之後,形成粒徑較大的膠羽,形成膠羽可在後續沈澱與過濾處理單元之中被去除。快混單元的主要目的是在短時間內均勻地分佈混凝劑使其與水中顆粒碰觸且作用,進而達到顆粒去穩的作用,然而時至今日,此單元的操作仍是以經驗為主,沒有具體的準則可供操作或設計人員參考。
本研究主要在不同混凝的機制下,來評估快混操作因子對混凝的影響。首先利用不同劑量的硫酸鋁及聚合氯化鋁對3種低、中、 高濁度的水樣進行混凝,結果發現主要的混凝機制為電性中和以及沈澱絆除兩種機制。對於中、高濁度的原水混凝,此兩種機制皆可有效地去除顆粒,然而,當原水為低濁度時,沈澱絆除是唯一有效的混凝機制。
利用濁度量測以及顆粒計數對各種快混操作因子對顆粒去穩與移除的的影響進行評估。快混因子包含了混凝劑的注入溶液濃度、加藥點、攪拌器形式、攪拌強度與攪拌時間,為突顯快混因子的影響,此部分混凝試驗的水樣即採用高濁度原水,實驗結果顯示,注入溶液濃度、加藥點、攪拌器形式對於顆粒去除並無重大的影響,而攪拌強度以及攪拌時間則有明顯影響。若混凝以電性中和為主要作用機制,試驗結果顯示混凝劑的混合均勻與否為決定混凝效率的主要因素。若混凝以沈澱絆除為主,結果則顯示在快混激烈攪拌過久的情況下,顆粒去除效率反而降低。
接下來於兩種混凝機制下進行試驗,利用顆粒聚集動力的分析對快混攪拌強度與攪拌時間對混凝的影響進行探討。在電性中和的機制下,探討局部過量加藥的情況對水中顆粒聚集以及沈澱去除的影響,除了利用濁度量測觀察顆粒去除的情形,也利用顆粒計數器分析殘餘濁度中特定粒徑大小的顆粒。在顆粒聚集方面,則利用光纖膠羽偵測儀(PDA)觀察顆粒聚集的狀態,而針對混凝形成的膠羽則進行特性分析。結果顯示在足夠的快混攪拌強度操作下,顆粒去除效果好,上層液中微小顆粒數目較少,顆粒的聚集則呈現聚集體與聚集體的結合,但形成較鬆散的膠羽,沈降速度較慢;而在
不足夠的快混攪拌強度操作下,顆粒去除效果差,上層液中微小顆粒數目較多,顆粒的聚集則呈現顆粒與聚集體的結合,但形成較結實的膠羽,沈降速度極快。透過以上試驗的結果,我們建立一套模式來完整描述不同快混操作對後續顆粒聚集以及膠羽沈降的影響。
在沈澱絆除與電性中和的機制下,探討快混攪拌時間對原水中的顆粒聚集以及沈澱去除的影響,利用濁度量測觀察顆粒去除的情形。在顆粒聚集方面,除了利用光纖膠羽偵測儀觀察顆粒聚集的狀態,也利用粒徑分析儀對快混階段所形成的微膠羽粒徑進行分析。此外,我們也分析所形成膠羽的強度及再聚集能力。結果顯示在沈澱絆除的情況下,過長的激烈攪拌會導致殘餘濁度再上升,在電性中和的機制下則無此現象發生。這是因為沈澱絆除所形成膠羽的強度以及再聚集能力較差,長時間的快混攪拌會導致原本的膠羽破壞而形成較小且難以沈澱的膠羽。
最後,我們發展一套改良式PDA偵測方法以判定快混的操作情況,對應不同的混凝機制與原水濁度,PDA的輸出值與批次試驗所得的殘餘濁度呈現逆相關。比較此一方法、批次試驗與文獻中經驗公式所決定的最適快混時間,結果相當接近,顯示此一方法具有良好的可行性。
ABSTRACT
Coagulation/flocculation is an essential physicochemical process for particle removal in water treatment. The process involves three continuous sequential steps. The first step involves the addition and the activation of the coagulant in water through a series of chemical reactions to form active coagulant species. Next, the coagulant species react with the suspended colloidal particles to destabilize the colloids with the aid of rapid-mixing. Finally, the destabilized colloidal particles collide form aggregates which can then be removed in the subsequent sedimentation and filtration. The purpose of rapid-mixing is to disperse the coagulants in the reactor within a short period of time. Since no concrete guideline concerning the engineering design of the operation of rapid-mixing in water treatment can be offered, the practice of rapid-mixing relies mostly on experiences.
This study investigated the effects of rapid-mixing parameters on coagulations of various destabilization mechanisms. Three synthetic turbid water samples from low to high turbidity were prepared from Ball clay for this study. Alum and PACl were employed as coagulants, and their predominant coagulation mechanisms under different dosages were determined. Two mechanisms, the ACN and the sweep coagulation, dominated the destabilization of the colloid under such experimental conditions. Although both mechanisms were effective in removing particles from high and medium turbid waters, only sweep coagulation was effective for the coagulation of low turbid water.
The effects of operational parameters of rapid-mixing on particle destabilization and removal were studied by monitoring the changes in turbidity and particle count. Parameters investigated were concentration of the coagulant working solution, dosing site, mixer type, mixing intensity and mixing time. And the coagulation was performed on high turbid water. The concentration of the working solution, dosing site and mixer type had no significant effect on particle removal. Mixing intensity and time, on the other hand, exhibited great impact on coagulation efficiency. For the ACN coagulation, the transportation of the coagulant species was important. For the sweep coagulation, prolonged mixing at high intensity had adverse effect on particle removal. These were further studied by the aggregation kinetics approach.
For ACN coagulation, the effects of local overdosing on the subsequent flocculation and sedimentation were studied. The residual turbidity, particle count, dynamics of the particle aggregation, flocs characteristics such as size, density and fractal dimension were determined for this purpose. The results showed that insufficient rapid-mixing were unable to induce aggregation to effectively coagulate small particles. The flocculation induced was cluster-particle aggregation, which formed denser and more settleable flocs. Sufficient rapid-mixing induced cluster-cluster aggregation which effectively coagulated most particles. The flocs formed were looser and less settleable. An aggregation and sedimentation model was proposed to illustrate the significance of rapid-mixing intensity on coagulation.
For both sweep and ACN coagulation, the effects of rapid-mixing time on the turbidity and the particle counts of the supernatant were investigated. The dynamics of the particle aggregation was evaluated by monitoring the PDA ratio output of the coagulated suspension. The size of the microflocs was examined with a particle sizer (PS 2400 PC). Floc strength and its reaggregation capacity under sweep and ACN coagulations were also studied. The results showed that in sweep coagulation longer mixing time resulted in higher residual turbidity, while in ACN coagulation the same or lower residual turbidity. The flocs formed from prolonged rapid-mixing under sweep coagulation contained low reaggregation capacity. The flocs were small and hard to settle after flocs breakup and reaggregation.
Finally, an optical technique (modified PDA system) was explored to determine the performance of the rapid-mixing. For each coagulation mechanism and turbid condition, the aggregation index of PDA was measured and compared with the residual turbidity of the supernatant under various rapid-mixing times. The residual turbidity and the PDA ratio output demonstrated a significantly inverse relationship. The optimal rapid-mixing times were determined from the jar tests, the PDA method and an empirical model. Consistent results were discovered, which suggested the feasibility of the modified PDA system in optimizing the coagulation operation.
CHAPTER 1 INTRODUCTION 1
1.1 Background................................................1
1.2 Outlines.................................................. 2
CHAPTER 2 LITERATURE REVIEW.................................. 6
2.1 Coagulation............................................... 7
2.1.1 Colloid stability....................................... 8
2.1.2 Mechanisms of coagulation...............................10
2.1.3 Coagulant...............................................15
2.1.4 Mixing in coagulation...................................19
2.2 Flocculation..............................................31
2.2.1 Dynamics of flocculation — Model development...........31
2.2.2 Dynamics of Flocculation — Instrumental analysis.......34
2.2.3 Characteristics of flocs................................37
CHAPTER 3 EXPERIMENTAL MATERIALS AND METHODS.................43
3.1 Materials.................................................43
3.1.1 Synthetic water sample..................................43
3.1.2 Coagulant working solution..............................44
3.2 Methods...................................................45
3.2.1 Jar test................................................45
3.2.2 Mixing test.............................................47
3.2.3 Particle count monitoring...............................48
3.2.4 Particle aggregation monitoring.........................48
3.2.5 Floc characteristics measurement........................50
3.2.6 Microfloc size measurement..............................52
3.2.7 Floc strength and reaggregation capacity measurement....52
3.2.8 Modified PDA monitoring system..........................53
CHAPTER 4 DETERMINATION OF ADEQUATE COAGULANT DOSAGE AND PREDOMINANT COAGULATION MECHANISM FOR WATERS OF VARIOUS TURBIDITY.....................................................55
4.1 Alum coagulation..........................................55
4.2 PACl coagulation..........................................61
4.3 Summary...................................................65
CHAPTER 5 EVALUATION OF OPERATIONAL PARAMETERS OF RAPID-MIXING .....................................................66
5.1 Effect of concentration of coagulant working solution.....67
5.2 Effect of dosing site.....................................72
5.3 Effect of mixer types.....................................75
5.4 Effect of mixing intensity and mixing time................81
5.5 Summary...................................................87
CHAPTER 6 EFFECTS OF RAPID-MIXING ON COAGLATION OF VARIOUS DESTABILIZATION MECHANISMS....................................88
6.1 Effect of local overdosing on coagulation.................90
6.1.1 Effect of mixing intensity on residual turbidity and particle counts...............................................90
6.1.2 Dynamics of particles aggregation.......................95
6.1.3 Analysis of floc characteristics........................97
6.1.4 Aggregation and sedimentation model....................102
6.2 Effect of rapid-mixing on coagulation under various mechanisms...................................................107
6.2.1 Effect of mixing time on residual turbidity............108
6.2.2 Dynamics of particles aggregation......................110
6.2.3 Comparison of microfloc size, floc strength and reaggregation capacity.......................................113
6.3 Summary..................................................116
CHAPTER 7 APPLICATION OF A MODIFIED PDA SYSTEM FOR OPTIMAL RAPID-MIXING.................................................118
7.1 Comparison of aggregation index and residual turbidity under various mixing times...................................119
7.2 Comparison of optimal rapid-mixing time determined from the PDA modified system, mixing test and empirical formula.......129
7.3 Summary..................................................132
CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS..................133
8.1 Conclusions..............................................133
8.2 Recommendations..........................................135
BIBLIOGRAPHY.................................................137
Amirtharajah, A. and Mills, K. M. Rapid-mix design for mechanism of alum coagulation. J. AWWA., 74, 210-216, 1982.
Amirtharajah, A., ASCE and Trusler, S. L. Destabilization of particles by turbulent rapid-mixing. J. Env. Eng., 112, 1085-1108, 1986.
Amirtharajah, A. and O’Melia, C. R. Coagulation Processes: Destabilization, mixing and flocculation. In Water quality and treatment. Pontius F. W., Ed.; McGraw-Hill Inc. Press, 269-366, 1990.
Amirtharajah, A. and Tambo, N. Mixing in water treatment. In Mixing in Coagulation and Flocculation. Amirtharajah, A., Clark, M. M. and Trussell, R. R. Ed.; American Water Works Association Research Foundation Press, 3-34, 1991.
Amirtharajah, A. and Jones, S. C. Mixing for coagulation: Organic polymers, static mixers, and modeling. In Conference of physical-chemical treatment process. 1994.
ASCE, AWWA and CSSE Water Treatment Plant Design. American Water Work Association Ed., 1969.
AWWA. Jar Testing. In Operation Control of Coagulation and Filtration Processes. AWWARF. Ed., 1-41, 1992.
Bache, D. H., Johnson, C., Paravasilopoulos, E., Rasool, E. and McGilligan, F. J. Sweep coagulation: structure, mechanism and practice. J. Water SRT-AQUA., 48, 201-210, 1999.
Bache, D. H., Johnson, C., McGilligan, F. J. and Rasool, E. A conceptual view of floc structure in the sweep floc domain. Wat. Sci. Tech., 36(4), 49-56, 1997.
Bottero, J. Y., Cases, J. M., Fiessinger, F., Poirier, J. E. Studies of hydrolyzed aluminum chloride solutions (I) ─ Nature of aluminum species and composition of aqueous solutions. J. Phy. Chem., 84, 2933-2939, 1980.
Bratby, J. R. Interpreting laboratory results for the design of rapid mixing and flocculation systems. J. AWWA., 73, 318-325, 1981.
Camp, T. R. Floc volume concentration. J. AWWA., 60, 656-673, 1968.
Ching, H. W., Tanaka, T. A. and Elimelech, M. Dynamics of coagulation of kaolin particles with ferric chloride. Wat. Res., 28, 559-569, 1994.
Clark, M. M., Srivastava, R. M. Mixing and aluminum precipitation. Env. Sci. Tech., 27, 2181-2189, 1993.
Clark, M. M. and Srivastava, R. M. Selection and Design of Mixing Processes for Coagulation. AWWA Research Foundation Presss, 1994.
Clark, M. M. and Joseph, R. V. Floc restructuring in varied turbulent mixing. J. of Colloid and Interface Science., 147, 407-421, 1991.
David, R. and Clark, M. M. Micromixing models and application to aluminum neutralization precipitation reactions. In Mixing in Coagulation and Flocculation. Amirtharajah, A., Clark, M. M. and Trussell, R. R., Ed.; American Water Works Association Research Foundation Press, 170-216, 1991.
Dempsey, B. A., Ganho, R. M. and O’Melia C. R. The coagulation of humic substances by means of aluminum salts. J. AWWA., 76, 141-150, 1984.
Dempsey, B A., Sheu, H., Tanzeer Ahmed, T. M. and Mentink, J. Polyaluminum chloride and alum coagulation of clay-fulvic acid suspension. J. AWWA., 77, 74-80, 1985.
Dempsey, B A. Reactions between fulvic acid and aluminum. In Aquatic Humic Substances Influence on Fate and Treatment of Polluants. Suffet, I. H. and MacCarthy, P. Ed.; ACS Press, 409-424, 1989.
Dentel, S. K. and Gossett, J. M. Mechanisms of coagulation with aluminum salts. J. AWWA. 80, 187-198, 1988.
Edzwald, J. K., Bottero, J. Y. and Klute, R. Particle alteration and particle production processes. In Treatment Process Selection for Particle Removal. McEwen, J. B. Ed.; American Water Works Association Research Foundation Press, 73-122, 1998.
Francois, R. J. and van Haute, A. A. The role of rapid mixing time on a flocculation process. Wat. Sci. Tech., 17, 1091-1101, 1984.
Francois, R. J. Strength of aluminum hydroxide flocs. Wat. Res., 21, 1023-1030, 1987.
Ghosh, M. M., Cox, C. D. and Prakash, T. M. Polyelectrolyte selection for water treatment. J. AWWA., 77, 67-73, 1985.
Gregory, J. Turbidity fluctuations in flowing suspension. J. of Colloid Interface Science, 105, 357-372, 1985.
Gregory, J. and Nelson, W. D. Monitoring of aggregates in flowing suspension. Colloids and Surfaces A, 18, 175-188, 1986.
Gregory, J. Laminar dispersion and the monitoring of flocculation processes. J. of Collods and Interface Science, 118, 397-409, 1987.
Gregory, J. Stability and Flocculation of Suspensions. In Processing of Solid-Liquid Suspensions. Shamlou P. A. Ed.; Pergamon Press, 59-92, 1993.
Gregory. J. The density of particle aggregates. Wat. Sci. Tech., 36(4), 1-13, 1997.
Gregory, J. and Dupont, V. Properties of flocs produced by water treatment coagulants. In Processing of Sludge Management Entering the 3rd Millennium-Industrial, Combined, Water and Wastewater Residues, 381-387, 2001.
Hall, E. S. and Packham, R . F. Coagulation of organic color with hydrolyzing coagulant. J. AWWA., 57, 1149-1166, 1965.
Han, M. and Lawer, D. F. The (relative) insignificance of G in flocculation. J. AWWA., 84, 79-91, 1992.
Higashitani, K. and Shibata T. Formation of pellet flocs from Kaoline suspension and their properties. J. Chem. Eng. of Japan., 20, 152-157, 1987.
Huang, Chihpin and Liu, C. B. Automatic control for chemical dosing in laboratory-scale coagulation process by using an optical monitor. Wat. Res., 30, 1924-1929, 1996.
Huang, Chihpin and Chen, G. S. Use of the fiber-optical monitor in evaluating the state of flocculation. Wat. Res., 30, 2723-2727, 1996.
Huang, Chihpin and Shiu, H. L. Interactions between alum and organics in coagulation. Colloids and Surfaces A, 113, 155-163, 1996.
Huang, Chihpin and Pan, J. R. Coagulation approach to water treatment. In Encyclopedia of Surface and Colloid Science. (In Press)
Jiang, Q. and Logan, B. E. Fractal dimensions of aggregates from shear devices. J. AWWA., 88, 100-113, 1996.
Johnson, P. N. and Amirtharajah, A. Ferric chloride and alum as single and dual coagulants. J. AWWA., 75, 232-239, 1983.
Kalinkov, P. and Mnzo, J. L. Technological aspects of advanced processes of coagulation and flocculation in water treatment. In NATO ASI series, Partnership Sub-series, 2. Env. — Vol. 5. Water supply systems─New technologies. Maksimovie, C.; Calomino, F. and Snoxell, J., Ed.; Springer-Verlag Press, 1996.
Kan, Chichuan and Huang, Chihpin Coagulation monitoring in surface water treatment facilities. Wat. Sci. Tech., 38(3), 237-244, 1998.
Kawamura, S. Design of basic treatment process units. In Integrated design and operation of water treatment facilities. Kawamura, S. Ed.; John Wiley& Sons Inc. Press, 59-336, 2000.
Kawamura, S. Consideration in improving flocculation. J. AWWA. 68, 328-336, 1976.
Kevin, H., Thomas, L. and Young, C. T. The significance of G in flocculation. Wat. Res., 32, 2660-2668, 1998.
Kusters, K. A., Wijers, J. G. and Thoenes, D. Aggregation kinetics of small particles in agitated vessels. Chem. Eng. Sci., 52, 107-121, 1997.
Langer, S. J. and Klute, R. Rapid mixing in sludge conditioning with polymer. Wat. Sci. Tech., 28(1), 233-242, 1993.
Lawler, D. F., Izurieta, E. and Kao, C. P. Changes in particle size distributions in batch flocculation. J. AWWA., 75, 604-612, 1983.
Lee. D. G., Bonner, J. S., Garton, L. S., Ernest, A. N. and Autenrieth, R. L. Modeling coagulation kinetics incorporating fractal theories: comparison with observed data. Wat. Res., 36, 1056-1066, 2002.
Lee D. J. Floc structure and bound water content in excess activated sludge. J. Ch. I. Ch. E., 25, 201-207, 1994.
Lee, D. J., Chen G. W., Liao, Y. C. and Hsieh, C. C. On the free-settling test for estimating activated sludge floc density. Wat. Res., 30, 541-550, 1996.
Letterman, R. D., Amirtharajah, A. A. and O’Melia, C. R. Coagulation and flocculation. In Water quality and treatment. Letterman, R. D., Ed.; McGraw-Hill Inc. Press, 6.1-6.66, 1999.
Lettermann, R. D., Quon, J. K. and Gemmel, R. S. Influence of rapid mix parameters on flocculation. J. AWWA., 65, 716-725, 1973.
Li, G., and Gregory, J. Flocculation and sedimentation of high-turbidity waters. Wat. Res., 25, 1137-1143, 1991.
Liem, L. E., Smith, D. W. and Stanley, S. J. Turbulent velocity in flocculation by means of grids. J. Env. Eng., 125, 224-233, 1999.
Li, X. and Logan, B. E. Collision frequencies of fractal aggregates with small particles by differential sedimentation. Env. Sci. Tech., 31, 1229-1236, 1997(a).
Li, X. and Logan, B. E. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid. Env. Sci. Tech., 31, 1237-1242, 1997(b).
Logan, B. E. and Klips, J. R. Fractal dimensions of aggregates formed in different fluid mechanical environments. Wat. Res., 29, 29, 443-453, 1995.
Lu, S., Ding, Y. and Guo, J. Kinetics of fine particle aggregation in turbulence. Adv. in Colloid and Interface Science, 78, 197-235, 1998.
Matsui, Y. and Tambo, N. Online floc size evaluation by photometric dispersion analyzer. Water Supply, 9, 71-78, 1991.
Matsui, Y., Ohto, T., Tambo, N. and Zaitsu, Y. Dual wavelength photometric dispersion analyzer of coagulation and flocculation. Wat. Sci. Tech., 27, 153-165, 1993.
Matsui, Y., Yuasa, A., Furuya, Y. and Kamei, T. Dynamic analysis of coagulation with alum and PACl. J. AWWA., 90, 90-106, 1998.
Meakin B. J. Fractal aggregates. Adv. in Colloid and Interface Science, 68, 249-295, 1988.
Mhaisalkar, V. A., Paramasivam, R. and Bhole, A. G. Optimizing physical parameters of rapid mix design for coagulation-flocculation of turbid waters. Wat. Res., 25, 43-52, 1991.
Munson, B. R., Young, D. F. and Okiishi, T. Viscous flow in pipes. In Fundation of fluid mechanisms. Munson, B. R.; Young, D. F. and Okiishi, T. Ed.; John Wiley & Sons Inc. Press, 465-560, 1990.
Muyibi, S. A. and Evison, L. M. Optimizing physical parameters affecting coagulation of turbid water with Moringa-oleifera seeds. Wat. Res., 29, 2689-2695, 1995.
Randtke, S. J. Organic contaminant removal by coagulation and related process combinations. J. AWWA., 80, 40-56, 1988.
Rossini, M., Garrrido, J. G. and Galluzzo, M. Optimization of the coagulation-flocculation treatment: influence of rapid mix parameters. Wat. Res., 33, 1817-1826, 1999.
Reynolds, T. D. and Richards, P. A. Coagulation and flocculation. In Unit operations and processes in environmental engineering. Reynolds, T. D. and Richards, P. A. Ed.; PWS Publishing Company Press, 166-218, 1995.
Shamlou, A. P. and Titchener-Hooker, N. Turbulent aggregation and breakup of particles in liquids in stirred vessel. In Proceessing of solid — liquid suspensions. Ayazishamlou, P. Ed.; Butterworth-Heinemann Ltd. Press, 1-25, 1993.
Semmens, M. J. and Ayer, K. Removal by coagulation of trace organics from Mississippi river water. J. AWWA., 77, 79-84, 1985.
Tambo, N. and Francois, R. J. Mixing, breakup, and floc characteristics. In Mixing in Coagulation and Flocculation. Amirtharajah, A.; Clark, M. M. and Trussell, R. R. Ed.; American Water Works Association Research Foundation Press, 256-281, 1991.
Tambo, N. and Watanabe, Y. Physical characteristics of flocs — I. The floc density function and aluminium floc. Wat. Res., 13, 409-419, 1979.
Thomas, D. N., Judd, S. J. and Fawcett N. Flocculation modeling: A review. Wat. Res., 33, 1579-1592, 1999.
Van Benschoten, J. E. and Edzwald, J. K. Chemical aspects of coagulation using aluminum salts-II. Coagulation of fulvic acid using alum and polyaluminum chloride. Wat. Res., 24, 1527-1537, 1990.
Vrale, L. and Jorden R. M. Rapid mixing in water treatment. J. AWWA., 63, 52-58, 1971.
Wennerstrom, H. Colloids. In Foundations of Colloid Science. Stokes R. J. and Evans D. F. Ed.; Wiley-VCH Inc. Press, 115-200, 1997.
Wiesner, M. R. and Klute, R. Properties and measurements of particulate contaminants in water. In Treatment Process Selection for Particle Removal. McEwen, J. B., Ed.; AWWA Research Foundation Press, 35-72, 1998.
Wu, C. C., Lee, D. J. and Huang, C. P. Determination of optimal dose of polyelectrolyte sludge conditioner considering sedimentation effects. Adv. Env. Res., 4, 245-249, 2000.
Young, S., Stanley, S. J. and Smith, D. W. Effect of mixing on the kinetics of polymer-aided flocculation. J. Water SRT- AQUA, 49, 1-8, 2000.
Yasuhisa, A. and Yoshikazu, T. Settling velocity of an aluminium-kaolinite floc. Wat. Res., 31, 449-454, 1997.
Yao, C. H. The preparation of polymeric aluminum chloride (PACl) and its application in water treatment. Johns Hopkins University Press, MD, 1987.
黃文鑑 (Huang, W. J.) 混凝、吸附對溶解性有機物去除及受預氯影響之研究,博士論文,國立成功大學環境工程研究所,民國86年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊