跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/18 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李沛濠
研究生(外文):Pei-Haow Li
論文名稱:基於制水閥區可靠度之自來水管網換管規劃模式
論文名稱(外文):Water Distribution System Replacement Model based on Valve-enclosed Segment Reliability
指導教授:高正忠高正忠引用關係
指導教授(外文):Jehng-Jung Kao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:60
中文關鍵詞:自來水管網可靠度換管規劃制水閥分區
外文關鍵詞:optimizationwater distribution networkreliabilitypipe replacementvalve-enclosed segmentenvironmental system analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
自來水管網傳送民生用水,必須進行有計畫的換管工作,以維持供水系統的可靠度。一般在進行換管規劃或是管網可靠性分析的時候,多以管線為單位進行影響分析,但由於管線修復必須關閉周圍的制水閥才能進行,故不只影響管線本身,亦會影響管線周圍制水閥關閉所截斷的分區。若只考量損壞管線本身的影響範圍,可能會導致低估管線損壞所造成的缺水量及影響範圍,並誤導換管規劃的最終決策。為了改善上述只考量管線本身影響的缺失,本研究發展一考量制水閥分區損壞影響之換管優選模式,以期得到更合理的決策依據。
本研究首先發展出一個演算程序以決定制水閥截斷分區,並將原始管網轉換為以分區為單位之網路來呈現分區間的關係。若分區損壞會造成其他管網區域無法供水則稱之為關鍵分區,本研究利用深先搜尋(depth-first search)之衍生演算程序進行關鍵分區之判識,並推估所可能影響之缺水量。至於其他種分區的損壞,雖不至於造成其他區域完全無法供水,但或多或少也會對其他分區造成影響,此部分利用EPANET2 進行模擬,以推估所損壞影響缺水量。本研究以各分區損壞所影響之缺水量以及各分區之整體失敗率評量自來水管網系統之可靠度,並據以發展一考量制水閥分區影響之換管優選模式。並與只考量管線本身影響之換管優選模式進行比較,由案例分析結果可發現,考量制水閥分區影響的優選模式,可以在較經濟有效的花費成本下,得到更高的缺水可靠度改善量,使得管網系統更為可靠。
關鍵詞:自來水管網、可靠度、換管規劃、制水閥分區

Proper pipe replacement is necessary for a water distribution network to assure its reliability for water supply. Previous studies for pipe replacement planning generally regarded each pipe as an independent unit during analysis. However, closing all peripheral valves is required prior to performing maintenance on a failed pipe, and the actual influence includes the network segment closed off and adjacent segments. Regarding each pipe as an independent unit may underestimate total shortage or influenced area and thus result in an inappropriate decision. This study therefore views valve-enclosed segments as units for determining the impact of damage to pipes and establishing an optimization model to facilitate decision-making analyses.
In this study, an algorithm is proposed to identify valve-enclosed segments in a water distribution network and a conceptual segment network can thus be created for further analyses. A computer program based on a depth-first search algorithm is developed to determine critical segments. The EPANET2 model is used to estimate demand shortage impact from damage to segments. A segment-based pipe replacement optimization model with the objective to maximize improvement in shortage reliability after replacement is developed. A case study is implemented under various cost limitations for comparing the proposed model with the conventional pipe-based model. Results show that the proposed model is effective in making an appropriate replacement decision for improving overall shortage reliability.
Keywords: optimization, water distribution network,reliability, pipe replacement, valve-enclosed segment, environmental systems analysis.

中文摘要
英文摘要
誌謝
目錄
圖目錄
表目錄
符號說明
一、前言
1.1 研究緣起
1.2 研究目的
1.3 論文內容
二、文獻回顧
2.1 考量制水閥分區之相關研究
2.2 管網可靠度分析
2.3 管線換管規劃
三、研究方法與工作流程
3.1 制水閥分區判識演算程序
3.1.1 制水閥分區
3.1.2 關鍵分區
3.2 制水閥分區之損壞影響分析
3.2.1 一般制水閥分區
3.2.2 關鍵分區
3.3 制水閥分區失敗機率之推求
3.4 換管規劃優選模式
3.4.1 模式一:基於制水閥分區影響
3.4.2 模式二:基於個別管線影響
四、案例探討及成果與討論
4.1 案例簡介
4.2 資料編輯整理
4.3 建立制水閥分區簡化特性管網
4.4 各分區損壞之影響分析
4.4.1 一般制水閥分區
4.4.2 關鍵分區
4.5 換管規劃模式求解
4.5.1模式Ⅰ-基於制水閥分區影響
4.5.2模式Ⅱ-基於個別管線影響
4.5.3 結果與討論
五、結論與建議
5.1 結論
5.2 建議
參考文獻
附錄一 EPANET2 簡介

1. 朱健行,( 83年,1994 ),“自來水管線設施之診斷與更新論”,自來水會刊雜誌,第五十期,pp56。
2. 王如意,林聰悟等,“台北自來水網路模擬模式適用參數之研究”,國立台灣大學水工試驗所,民國八十年,pp. 36
3. Ang, A. H-S., and W. H. Tang, The Poisson process and Poisson distribution, in Probability Concepts in Engineering Planning and Design Volume 1 Basic Principles, pp. 114-116, John Wiley & Sons Inc., 1975.
4. Alonso, J.M., F. Alvarruiz, D. Guerrero, V. Hernandez, P. A. Ruiz, A. M. Vuidal, F. Martinez, J. Vercher, and B. Ulanicki, Parallel computing in water network analysis and leakage minimization, Journal of Water Resources Planning and Management, 126(4), 251-260, 2000.
5. Bao,Y., and L. W. Mays, Model for water distribution system reliability, Journal of Hydraulic Engineering, 116(9), 1119 — 1137, 1990.
6. Bouchart, F., and I. Goulter, Reliability improvements in design of water distribution networks recognizing valve location, Water Resources Research, 27(12), 3029-3040, 1991.
7. Dandy, G. C., and M. Engelhardt, Optimal scheduling of water pipe replacement using genetic algorithms, Journal of Water Resources Planning and Management, 127(4), 214-223, 2001.
8. Deb, A. K., K. A. Momberger, Y. J. Hasit, and F. M. Grablutz, Valve management, in Guidance for management of Distribution System Operation and Maintenance, pp. 70-76, AWWA Research Foundation and the American Water Works Association, Denver, 2000.
9. Faller, K., Application of reliability considerations, in Manual of Water Supply Practices--M31 Distribution System Requirements for Fire Protection, third edition, pp. 34, American Water Works Association, Denver, 1998.
10. Fujiwara, O., and J. Li, Reliability analysis of water distribution networks in consideration of equity, redistribution, and pressure-dependent demand, Water Resources Research, 34(7), 1834-1850, 1998.
11. Fujiwara, O., and T. Ganesharajah, Reliability assessment of water supply systems with storage and distribution networks, Water Resources Research, 29(8), 2917 — 2924, 1993.
12. Gupta, R., and P. R. Bhave, Reliability analysis of water distribution systems, Journal of Environmental of Engineering, 120(2), 447 — 460, 1994.
13. Horowitz, E., S. Sahni, and S. Anderson-Freed, Biconnected components and articulation points, in Fundamentals of Data Structures in C, pp. 278-283, Computer Science Press, New York, 1993.
14. ILOG, Ilog Cplex6.5 User’s Manual, Ilog, France, 1999.
15. Kim, J. H., and L.W. Mays, Optimal rehabilitation model for water- distribution systems, Journal of Water Resources Planning and Management, 120(5), 674-692, 1994.
16. Kleiner, Y., B. J. Adams, and J. S. Rogers, Selection and scheduling of rehabilitation alternatives for water distribution systems, Water Resources Research, 34(8), 2053-2061, 1998.
17. Kleiner,Y. , B. J. Adams, and J. S. Rogers , Long-term planning methodology for water distribution system rehabilitation, Water Resources Research, 34(8), 2039 — 2051, 1998.
18. Mays, L. W., Analyzing the effect of valving on system reliability, in Water Distribution Systems Handbook, pp. 18.10-18.15, McGraw-Hill, New York, 2000.
19. Ross, S.M., Introduction to Probability Models, Academic Press Inc., Orlando, Fl, 1985.
20. Rossman, L. A., EPANET2 users manual, Risk Reduction Engineering laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio, 2000.
21. Sedgewick, R., Connectivity, in Algorithms in C, pp. 437-449, Addison-Wesley, New York, 1990.
22. Shamir, U., and C. D. D. Howard, An analysis approach to scheduling pipe replacement, Journal AWWA, 71(5), 249-258, 1979.
23. Su, Y. C., L. W. Mays, N. Duan, and K. E. Lansey, Reliability-based optimization model for water distribution systems, Journal of Hydraulic Engineering, 114(12), 1539-1556, 1987.
24. Wagner, J. M., U. Shamir, and D. H. Marks, Water distribution reliability: simulation methods, Journal of Water Resources Planning and Management, 114(3), 276-294, 1988.
25. Walski, T. M., and A. Pelliccia, Economic analysis of water main breaks, Journal of American Water Works Association, 74(3), 140-147, 1982.
26. Walski, T. M., Water distribution valve topology for reliability analysis, Reliability Engineering and System Safety, 42, 21-27, 1993.
27. Walski, T. M., Discussion of “Quantitative approaches of reliability assessment in pipe networks” by Goulter and Coals, Journal of Transportation Engineering, 113(5), 585-587, 1987.
28. Wu, S. J., J. H. Yoon, and R. G. Quimpo, Capacity-weighted water distribution system reliability, Reliability Engineering and System Safety, 42, 39-45, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top