|
Abramowitz, M., and I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, Washington, Dover, Inc., 1964. Batu, V., Aquifer hydraulics: A comprehensive guide to hydrogeologic data analysis, John Wiley and Sons, Inc., New York, 1998. Burden, R. L., and J. D. Faires, Numerical Analysis, 6th Ed., Cole Publishing Company, Brooks, 1989. Butler, J. J., Jr., Pumping tests in nonuniform aquifers — The radially symmetric case, J. Hydrol., 101, 15-30, 1988. Carslaw, H. S., and J. C. Jaeger, Some two-dimensional problems in conduction of heat with circular symmetry, Some Problems in Conduction of Heat, 46, 361-388, 1939. Carslaw, H. S., and J. C. Jaeger, Conduction of heat in solids, Second Ed., Clarendon Press, Oxford, 1959. Chang, C. C., and C. S. Chen, Analysis of constant-head for a two-layer radially symmetric nonuniform model, Proceeding of the Third Groundwater Resources and Water Quality Protection Conference, National Central University, Chung-Li, Taiwan, 1999. Comrie, L. J., Chamber’s six-figure mathematical tables, London, W. & R., Chambers, 1949. Crump, K. S., Numerical inversion of Laplace transforms using a Fourier series approximation, Journal of the Association for Computing Machinery, 23(1), 89-96, 1976. de Hoog, F. R., J. H. Knight, and A. N. Stokes, An improved method for numerical inversion of Laplace transforms, Society for Industrial and Applied Mathematics J. Sci. Stat. Comput., 3(3), 357-366, 1982. Gerald, C. F., and P. O., Wheatley, Applied Numerical Analysis, 5th Ed., Addison-Wesley, California, 1989. Goldstein, S., Some two-dimensional diffusion problems with circular symmetry, London Math. Society, Proc. Soc.,Ⅱ, 51-88, 1932. Hantush, M. S., Flow of ground water in sands of nonuniform thickness; Park 1. Flow in a wedge-shaped aquifer, Journal of Geophysical Research, 67(2), 703-709, 1962. Harvard Problem Report, A Function describing the conduction of heat in a solid medium bounded internally by a cylindrical surface, Computation Laboratory of Harvard University, No. 76, 1950. Hildebrand, F. B., Advanced Calculus for Applications, Second Ed., Prentice-Hall, Inc., New Jersey, 1976. Huang, C. P., H. D. Yeh, and S. Y. Yang, Applications of accelerate methods on the evaluation of two types of drawdown solutions, Proceedings of the 11th hydraulic engineering conference, National Taiwan University, Taipei, Taiwan, D147-152, 5-6 July 2000. Ingeroll, L. R., F. T. W. Adler, H. J. Plass, and A. G. Ingersoll, Theory of earth heat exchangers for the heat pump, Journal section, Heating, Piping, and Air Conditioning, 113-122, 1950. Ingersoll, L. R., O. J. Zobel, and A. C. Ingersoll, Heat conduction with engineering, geological, and other applications, Second Ed., University Wisconsin Press, Madison, 1954. International Mathematics and Statistics Library, Inc., IMSL User's Manual, Vol. 2, IMSL, Inc., Houston, TX, 1987. Jacob, C. E., and S. W. Lohman, Nonsteady flow to a well of constant drawdown in an extensive aquifer, Transactions, American Geophysical Union, 33(4), 559-569, 1952. Jaeger, J. C., Heat flow in the region bounded internally by a circular cylinder, Proceedings of the Royal Society Edinburgh, Section A, 61, 223-228, 1942. Jaeger, J. C., Numerical values for the temperature in radial heat flow, J. Math. Phys., 34, 316-321, 1956. Jaeger, J. C., and M. Clarke, A short table of I(o, i; x), Proceedings of the Royal Society Edinburgh, Section A, 61, 229-230, 1942. Lohman, S. W., Ground-Water Hydraulics, Geological Survey Professional Paper; 708, Washington: United States Government Printing Office, 1972. Markle, J. M., R. K. Rowe, and K. S. Novakowski, A model for the constant-heat pumping test conducted in vertically fractured media, International Journal for Numerical and Analytical Methods in Geomechanics, 19, 457-473, 1995. Novakowski, K. S., A composite analytical model for analysis of pumping tests affected by wellbore storage and finite thickness skin, Water Resour. Res., 25(9), 1937-1946, 1989. Novakowski, K. S., Interpretation of the transient flow rate obtained from constant-head tests conducted in situ in clays, Can. Geotech. J., 30, 600-606, 1993. Peng, H. Y., H. D. Yeh, and S. Y. Yang, Improved numerical evaluation of the radial groundwater flow equation, Advances in Water Resources, 2002. (Accepted) Reed, J. E., Type Curves for Selected Problems of Flow to Wells in Confined Aquifers; Book 3 Applications of Hydraulics, United States Department of the Interior, 1980. Shanks, D., Non-linear transformations of divergent and slowly convergent sequences, J. Math. Phys., 34, 1-42, 1955. Smith, L. P., Heat flow in an infinite solid bounded internally by a cylinder, J. Applied Physics, 8(6), 45-49, 1937. Spiegel, M. R., Laplace Transforms, Schaum Publishing Co., New York, 1965. Stehfest, H., Numerical inversion of Laplace transforms, Commun. ACM, 13(1), 47-49, 1970. Streltsova, T. D., Well Testing in Heterogeneous Formations, John Wiley and Sons, Inc., New York, 45-49, 1988. Streltsova, T. D., and R. M. McKinley, Effect of flow time duration on buildup pattern for reservoirs with heterogeneous properties, Soc. Pet. Eng. J., 294-306, 1984. Talbot, A., The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl., 23, 97-120, 1979. Watson, G. N., A Treatise on the Theory of Bessel Functions, Second Ed., Cambridge University Press, 1958. Wynn, P., On a device for computing the em(Sn) transformation, Math. Tables Other Aids Comp., 10, 91-96, 1956.
|