跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 23:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王俞敏
研究生(外文):Yu-Min Wang
論文名稱:高效率文氏洗滌器之測試研究
論文名稱(外文):Experimental Study of An Efficient Venturi Scrubber
指導教授:蔡春進蔡春進引用關係
指導教授(外文):Chuen-Jinn Tsai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:異相核凝文氏洗滌器次微米微粒
外文關鍵詞:Heterogeneous NucleationVenturi ScrubberSubmicron Particles
相關次數:
  • 被引用被引用:3
  • 點閱點閱:865
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:3
本研究利用高溫飽和蒸氣混合常溫廢氣,使廢氣中之次微米微粒與水蒸氣混合增長,再以文氏洗滌器去除增長之微粒,研究中所測試的微粒分別為氯化鈉、二氧化矽及油酸三種。利用異相核凝的原理,提高洗滌器之去除效率,並考量系統壓降,期望能在低壓降下達高去除效率的目的。
測試去除細微粒用的高效率文氏洗滌器系統,此系統由於廢氣與蒸氣混合的方式不同而分為系統一及系統二。系統一之設計為廢氣與蒸氣先混和後,廢氣推動蒸氣進入文氏洗滌器;系統二之設計則是將廢氣由文氏管上方之左側引入,蒸氣由文氏管上方之右端入流,廢氣與蒸氣在文氏管上端混合後再一起進入文氏洗滌器。實驗中操作條件為廢氣氣流量Q=200、250及300 lpm,液體-氣體混合比L/G=1.5、2及2.5 l/m3。由實驗結果可知,傳統的文氏洗滌器在氣流量低、壓力降低的情況下,去除效率差,而高效率文氏洗滌器的去除效率已有改善。其中系統二因廢氣與蒸氣混合較好,去除效率較系統一大幅提昇。
以氣流量Q=200 lpm,L/G=2.5 l/m3為例,粒徑大於100nm以上,傳統文氏洗滌器氯化鈉微粒的去除效率為20∼40%,在高效率文氏洗滌器系統一所測得的去除效率約為40∼50%之間,而由高效率文氏洗滌器所測得的去除效率提高為80∼85%。對二氧化矽微粒而言,傳統的文氏洗滌器、高效率文氏洗滌器系統一及系統二之去除效率分別為小於40%、20∼40%及65∼85%之間。油酸微粒傳統的文氏洗滌器、高效率文氏洗滌器系統一及系統二之效率分別為40%、50%及80%。
研究發現實驗中壁面損失及混合不均會造成混合後之蒸氣壓較理論值低。若前者為後者之0.465倍時,理論收集效率始能與實驗值吻合。本實驗以(Calvert1972)所提之效率理論式推估高效率文氏洗滌器之去除效率,並與實驗值比較。以氣流量Q=300 lpm,L/G=2.5 l/m3的操作條件為例,氯化鈉微粒在粒徑為50∼500nm之間之收集效率理論值約為95∼100%之間,而實驗的去除效率則介於90∼100%。粒徑大於100 nm以上的二氧化矽微粒效率理論值約為80∼90%,而實驗值也是介於此範圍;至於油酸的理論值為60∼80%,而實驗值為80∼95%。
將來若能進一步改善廢氣與蒸氣混合情形,及克服壁面損失(wall loss),預期將能在低壓降的操作條件下達到更高的去除效率。
An efficient new venturi scrubber uses high temperature (100℃)and saturated stream to mix with normal temperature exhaust gas (30℃), allowing the submicron particles to grow to bigger particles by heterogeneous nucleation. This research used different kinds of test aerosols:NaCl、SiO2 and Olecid acid, and made use of heterogeneous nucleation theory to improve the removal efficiency of the venturi scrubber. It was expected that high efficiency could be achieved at low pressure drop.
Depending on the mixing method of fuel gas and steam, two different highly efficient venturi scrubber systems were used:system 1 and system 2. Prior to entering the venturi scrubber, fuel gas flew into the steam generator and mixed with it in system 1. In system 2, fuel gas coming from the tube at the left side of the venturi scrubber mixed with steam coming from the tube at the right side of the venturi scrubber on top of the venturi scrubber. In the test, the gas flow rates were 200、250 and 300 lpm, and the liguid-to-gas rates were 1.5、2 and 2.5 l/m3. The results showed that removal efficiency of the traditional venturi scrubber was low at low gas flowrate and pressure drop. The removal efficiency of the venturi scrubbing system was improved. In particulate, due to better mixing of the gas and steam of the system 2, its particles removal efficiency was much higher than the system 1.
For example, at the gas flow rate of 200 lpm, the liquid-to gas ratio of 2.5 l/m3, and particles diameter larger than 100nm, the efficiency of the traditional venturi scrubber was between 20~40%, the efficiency in the system 1 was 40~50%, and the efficiency was increased to 80~85%. For SiO2 particles, the efficiency of the traditional venturi scrubber is less than 40%. In comparison, the efficiency of the system 1 and system 2 of the new venturi scrubber were 20~40% and 65~85%, respectively. For Olecid acid particles, the efficiency of the traditional venturi scrubber was 40%, while the efficiency of system 1 and system 2 of the new venturi scrubber was improved to 50% and 80%, respectively.
This study here found that the stream wall loss and the uneven mixing of steam and gas resulted in lower saturation ratio than the theoretical values. If the experimental saturation ratio is 0.465 times to the theoretical values, the theoretical efficiency will be much close to the experimental data. For example, when the mixing ratio was 0.091, the gas flow rate was 200 lpm and the liquid-to-gas ratio was 2.5 l/m3, the theoretical efficiency of the NaCl particles would be greater than 95%, and the experimental efficiency was 90~100% for particulate diameter ranging from 50~500nm. When the diameter of SiO2 particles was above 100nm, theoretical efficiency was between 80~90% and the experimental efficiency is in the same range. The theoretical efficiency of Olecid acid particles was 60~80%, and the experimental efficiency was between 80~95%. The theoretical values appear to be in good agreement with the experimental data.
If we could further improve the mixing of exhaust gas and steam and decrease steam wall loss, it is expected that the system would achieve even higher efficiency at lower pressure drop than the current new venturi scrubber system.
摘 要 I
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 XI
符號說明 XII
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1次微米微粒之特性及影響 3
2.2文氏洗滌器設計及操作因子 4
2.2.1 去除效率理論 4
2.2.2 壓力降理論 7
2.3微粒成長之理論模式 9
2.3.1 蒸氣混合 10
2.3.2 微粒核凝成長 11
第三章 實驗方法 18
3.1實驗設備 18
3.1.1文氏洗滌器設備 18
3.1.2微粒的產生與量測 19
3.1.3實驗設備的QA/QC 21
3.2空白測試 22
3.3去除效率的量測 23
3.3.1傳統文氏洗滌器的量測 23
3.3.2經核凝成長的文氏洗滌器去除效率的量測 24
3.3壓力降的量測 25
3.4理論模擬 25
第四章 結果與討論 34
4.1空白測試 34
4.1.1實驗前測試 34
4.2傳統去除效率的量測 34
4.2.1去除效率的量測 34
4.2.2壓力降的量測 35
4.3高效率文氏洗滌器的實驗 36
4.3.1去除效率的量測 36
4.3.2壓力降的量測 37
4.4 理論模擬 38
第五章 結論 79
第六章 參考文獻 80
[1] Miao, C. C., and Tsai, C. J., A Study of White Smoke Emission in a semiconductor fab., International Conference on Aerosol Science and Technology, pp. 409-416, 1995.
[2] Cheng, Y. H. and Tsai, C. J., Factors Influencing Pressure Drop Through a Dust Cake During Filtration, Aerosol Sci. Tech., Vol.12, pp. 456-459, 1998.
[3] 簡聰智、蔡春進,去除次微米微粒之文氏洗滌器理論分析,NSC89-2211-E-009-006,2000。
[4] Schwartz, J., D. W. Dockery, and L. M. Neas, Is Daily Mortality Associated Specifically with Fine Particles? , Air & Waste Manage. Assoc., 46, pp. 927-939,1996.
[5] Wilson, W. E., The U.S. Environmental Protection Agency Promulgates New Standards for Fine Particles, Workshop on Recent Research and Development of PM2.5, 1999.
[6] Hinds, W. C., Aerosol Technology, Wiley, Ner York, 1999.
[7] 李崇德,張順欽,吳國華,陳熙灝,空氣品質變化趨勢與細懸浮微粒(PM2.5)監測現況分析,第十五屆空氣污染控制技術研討會論文集,pp. 686-693,高雄市中山大學,1998。
[8] 袁中新,袁景嵩,張瑞正,袁菁,張章堂,台灣南部地區PM2.5及PM10懸浮微粒之時空分佈趨勢探討,第十五屆空氣污染控制技術研討會論文集,pp. 686-693,高雄市中山大學,1998。
[9] Daubay T. G., and Clibb K. W., Comparison of Telephotometer Measurement of Extinction Coefficient with Scattering and Absorption Coefficients, Atoms. Environ. , 15A, pp. 2617-2624,1981.
[10] 宋鎮宇,李崇德,張家瑄,高雄小港地區氣膠特性及散光係數,第八屆氣膠科技研討會論文集,pp.171-176,新竹市工研院,2000。
[11] 張淑婷、蔡春進,半導體工業白煙控制之可行性研究,第十二屆空氣污染控制技術研討會論文集,pp. 456-461,台南市成功大學,1995。
[12] Tsai, C. J., Miao, C. C., and Lu, H. C., White Smoke Emission from a Semiconductor Manufacturing Plant, Env. Int., Vol. 23, No.4, pp. 489-496, 1997.
[13] Calvert, S., Venturi and Other Atomizing Scrubbers Efficiency and Pressure Drop, AICHE J., Vol. 16, pp. 392-396, 1970.
[14] Yung, S. C., Calvert, S., Barbarika, H. F., and Sparks, L. E., Venturi Scrubber Performance Model, Env. Sci. Tech., Vol. 12, pp. 456-458, 1978.
[15] Nukiyama, S., and Tanasawa, Y., Trans. Soc. Mech. Engrs. (Japan), Vol.5, pp.63-68, 1939.
[16] Yung, S. C., Barbarika, H. F., and Calvert, S., Pressure Loss in Venturi Scruer, J. Air Pollut. Control Assoc., Vol.27, No.4, pp.348-351,1977.
[17] Slinn, W. G. N., “Precipitation Scavenging” in Atmospheric Sciences and Power Production Research, U.S. Dept. of Energy, 1983.
[18] Leith, D., Cooper, D. W., and Rudnick, S. N., Venturi Scrubbers: Pressure Loss and Regain, Aerosol Science and Technology, 4:239-243, 1985.
[19] Calvert, S., Goldschmid, J., Leith, D., and Mehta, D., Scrubber Handbook NTIS, 1972.
[20] Hesketh, H. E., Atomization and Cloud Behavior in Wet Scrubbers, U.S.-U.S.S.R. Symposium on control of Fine Particulate Emissions, Jan. pp.15-18, 1974.
[21] Schauer, P. J., Removal of Submicron Aerosol Particles from Moving Gas Stream, Ind. Eng. Chem. 43, pp.1536, 1951.
[22] Heidenreich, S., and Ebert, F., Condensation droplet growth as a preconditioning technique for the separation of submicron particles from gases, J. Chem. Eng. and Processing 34, pp.235-244,1995
[23] Chen, C. C., Shu, H. K., Yang, Y. K., Nucleation-Assisted Process for the Removal of Fine Aerosol Particles, Ind. & Eng. Chem. Res., 32: (7)1509-1519, 1993.
[24] Porstendorfer, J., Scheiel, H. G., Pohl, F. G., Preining, O., Reischl, G., and Wagner, P. E., Heterogeneous Nucleation of Water Vapor on Monodisperse Ag and NaCl Particles with Diameters Between 6 and 18 nm. Aerosol Science Technology, Vol4, PP.65-79, 1985.
[25] Fuchs, N. A., and Sutugin, A. G., High dispersed aerosols, Topics in Current Aerosol Research (Part 2), G. M. Hidy and J. R. Brock. Pergamon, New York, pp. 1-200, 1971.
[26] Kolb, C. E., Worsnop, D. R., Jayne, J. T., Davidovits, Comment on Mathematical Models of The Uptake of CIONO2 and Other Gases By Atmospheric Aerosols, J. Aerosol Science Vol.29, No.7, pp.893-897,1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 23. 顏慶章,「台灣金融改革的新方向」,財稅研究,第34卷第1期,2002年1月,頁1-8。
2. 21. 謝易宏,「企業整合與跨業併購法律問題之研究-以銀行業與證券業間整合為例」,律師雜誌,第252 期,2000 年9 月,頁23~62 。
3. 23. 顏慶章,「台灣金融改革的新方向」,財稅研究,第34卷第1期,2002年1月,頁1-8。
4. 17. 趙莊敏、沈英明、李儀坤、吳再益,「金融控股公司相關政策法規之研究及台灣未來之展望」,立法院院聞,第29卷第4期,頁31-43。
5. 21. 謝易宏,「企業整合與跨業併購法律問題之研究-以銀行業與證券業間整合為例」,律師雜誌,第252 期,2000 年9 月,頁23~62 。
6. 17. 趙莊敏、沈英明、李儀坤、吳再益,「金融控股公司相關政策法規之研究及台灣未來之展望」,立法院院聞,第29卷第4期,頁31-43。
7. 14. 陳裴紋,「美國金融服務業現代化法案之內容及其影響」,中央銀行季刊,第22卷第1 期,2000年3月,頁13~30。
8. 14. 陳裴紋,「美國金融服務業現代化法案之內容及其影響」,中央銀行季刊,第22卷第1 期,2000年3月,頁13~30。
9. 5. 王國輝,「金融控股公司的管理定位及集團整合角色」,會計研究月刊,第194期,年月,頁18-20。
10. 5. 王國輝,「金融控股公司的管理定位及集團整合角色」,會計研究月刊,第194期,年月,頁18-20。
11. 3. 王文宇,「金融機構跨業經營相關法律問題」,實用稅務,2001年6月,頁16-23。
12. 3. 王文宇,「金融機構跨業經營相關法律問題」,實用稅務,2001年6月,頁16-23。
13. 2. 王文宇,「金融控股公司法之評析」,月旦法學雜誌,第77期,2001年10月,頁194-207。
14. 2. 王文宇,「金融控股公司法之評析」,月旦法學雜誌,第77期,2001年10月,頁194-207。
15. 1. 王文宇,「我國銀行兼營證券業務法制之研究」,經社法制論叢,第24期,1999年7月,頁148 。