(54.236.58.220) 您好!臺灣時間:2021/02/27 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉政彰
研究生(外文):Chengchang Liu
論文名稱:以矽膠管與吸收瓶採集無塵室無機酸鹼性氣體之方法比較
論文名稱(外文):Comparison of Three Samplers for Sampling Inorganic Airborne Molecular Contaminants in Clean Room Environment
指導教授:白曛綾
指導教授(外文):Hsunlin Bai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:空氣採樣分子污染物半導體晶圓
外文關鍵詞:air samplingAMCsemiconductorwaferammonia
相關次數:
  • 被引用被引用:10
  • 點閱點閱:652
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
無機酸鹼性氣體皆為無塵室主要之分子狀空氣污染物,過高之無機酸鹼氣體濃度會影響晶圓製品之良率。本研究針對無塵室之無機酸性氣體,以兩種型號之矽膠管(silica gel tube)及吸收瓶(impinger)測試其採樣條件,並比較採樣結果。對於氨氣,則以吸收瓶建議最適合之採樣方式。
由採樣條件測試結果可知,矽膠管在200-300 ml/min流量下,對各無機酸氣有較佳之採集效果,其於無塵室採樣時,採氣量至少需400L以上。而吸收瓶採樣流量需控制在300 ml/min以下,吸收液減少量才能小於5%,建議吸收瓶採集無機酸氣之流率為50 ml/min,NH3氣體則為300 ml/min,採集時間皆為24小時,在此條件下採集效果最佳。若環境中之濃度偏高時,則可適當地增加吸收液體積及縮短採樣時間。
由無塵室實地採樣結果則顯示,兩種型號之矽膠管背景值過高,無法反應出無塵室真實氣體濃度,故不適用於無塵室之採樣。吸收瓶於低濃度之採集效率較矽膠管高,用於無塵室採樣較矽膠管更適合。而由吸收瓶採樣結果顯示,無塵室空氣中之HF、HCl及NH3之濃度在1000 n mole/m3以上,以濃度值而言,此三者為無塵室中主要之無機氣狀污染物。另外NO2-、HNO3與H2SO4之濃度值雖較低,但仍高於濃度管理最高極限值,皆有可能造成晶圓表面之污染低。
Inorganic airborne molecular contaminants are important sources of contamination in cleanroom air that may cause device failure and decrease product yield. In this study, the optimal sampling conditions of two types of silica gel tubes as well as the impinger sampler for measuring acidic contaminants in cleanroom air were investigated. In addition, the optimum sampling condition for measuring ammonia by using the impinger sampler was also studied.
The experimental results indicated that silical gel tube has the best collection efficiency under flowrate of 200~300 ml/min and the sample volume must over 400 liter for effective sampling in cleanroom. The impinger sampler had non-obvious decrease in absorbent volume (<5%) when the sampling flowrate was controlled to below 300 ml/min. The optimal sampling condition of impinger for acidic contaminants and ammonia were at sample flowrate of 50 and 300 ml/min, respectively, sample time of 24-hr.
The results of actual cleanroom sampling showed that due to high interferences from residue contaminants in silica gel tubes, they were not suitable for low concentration cleanroom sampling. The interference from residue contaminants in silica gel was especially obvious for SUPELCO ORBO-53 sampler. The most suitable sampler for collecting acidic airborne contaminants in cleanroom air was the impinger sampler. It had the high recovery for HF of exceeded 90% in 60 ml absorbent and 100% for other acidic species in 30 ml absorbent. Beside, Impinger has the advantages of negligible interference from blank samples. The sampling results from the impinger sampler showed that the concentrations of HF, HCl and NH3 were exceeded 1,000n mol/m3. So these three species were the major inorganic airborne molecular contaminants in the cleanroom air.
第一章 前言
1.1 研究緣起
1.2 研究目的
第二章 文獻回顧
2.1 無塵室空氣污染物種類與來源
2.2 無機酸鹼氣體對半導體製程之影響
2.3 無機酸鹼性氣體之檢測方法
2.4 相關研究結果
2.5 無塵室無機酸鹼性氣體濃度表示法
第三章 實驗方法
3.1 採樣方法概述
3.2 實驗器材
3.3 採樣前之準備工作
3.3.1 採樣設備之清洗保存
3.3.2 溶液配置
3.3.3 皂泡流量計與個人採樣器之準備工作
3.4 採樣流程與實驗室處理程序
3.4.1 採樣流程
3.4.2 實驗室處理程序
3.5 分析步驟
3.5.1 陰離子分析步驟
3.5.2 陽離子分析步驟
3.6 樣品分析之品保及品管
3.6.1 個人採樣泵穩定性分析
3.6.2 空白值
3.6.3 方法偵側極限
3.6.4 回收率
3.6.5 重覆分析
第四章 結果與討論
4.1 採樣器背景空白分析
4.1.1 背景空白之比較
4.1.2 矽膠管背景值對樣本之影響
4.2 採樣條件測試結果
4.2.1 矽膠管
4.2.2 吸收瓶
4.3現場採樣結果
4.3.1 矽膠管採樣結果
4.3.2 吸收瓶與矽膠管採樣結果比較
4.3.3 吸收瓶採樣結果
第五章 結論與建議
5.1 結論
5.2 建議
參考文獻
Appel, B. R., Tokiwa, Y., Kothny, E. L., Wu R. and Povard, V., “Evaluation of procedures for measuring atmospheric nitric acid and ammonia”, Atmos. Environ., Vol. 22, No. 8, pp. 1565-1573, 1988
Cassinelli, M. E., “Laboratory Evaluation of Silica Gel Sorbent Tubes for Sampling Hydrogen Fluoride”, Am. Ind. Hyg. Assoc. J., Vol. 47, pp219-224, 1986
English, S., Cleanrooms, November (1996) pp 25.
Frickinger, J., Bugler, J., Zielonka, G., Pfitzner, L., Ryssel, H., Hollemann, S. and Schneider, H., “Reducing Airborne Molecular Contamination by Efficient Purging of FOUPs for 300-mm Wafer─The Influence of Materials Properties”, IEEE Transactions on Semiconductor Manufacturing, Vol. 13, ISSUE 4, pp427-433, November 2000
Grinshpun, S. A., Willeke, K., Ulevicius, V., Juozaitis, A., Terzieva, S., Donnelly, J., Stelma, G. N. and Brenner, K. P., “Effect of impaction, Bounce and Reaerosolization on the collection Efficiency of Impingers”, Aerosol Science and Technology, Vol. 26, pp326-342, 1997
Juozaitis, A., Trakumas, S., Girgzdiene, R., Girgzdys, A., Sopauskiene, D. and Ulevicius, V., “Investigations of gas-to-particle conversion in the atmosphere”, Atmospheric Research, Vol. 41, pp 183-201, 1996
Kobayashi, K., Tamura, M., Shimada, T. and Sakai, H., “Chemical Autodelivery System,” Denski Zairyo (Electronic Material), Sup.Vol., pp. 157, 1993
Lue, S. J., Wu, T., Hsu, H. and Huang, C., “Application of Ion Chromatography to the Semiconductor IndustryⅠ─Measurement of Acidic Airborne Contaminants in Cleanrooms” Journal of Chromatography A, Vol.804, pp273-278. 1998
Lue, S. J. and Huang, C., “Application of Ion Chromatography to the Semiconductor IndustryⅡ─Determination of basic Airborne Contaminants in Cleanrooms”, Journal of Chromatography A, Vol.850, pp283-287. 1999
Muller, A. J., L. Psota-Kelty, A., Krautter, H. W. and Sinclair, J. D., “Volatile cleanroom contaminants-Sources and detection”, Solid State Technol., pp61-72, Sept. 1994
Macdonald, S. A., Hinsberg, W. D., Wendt, H. R., Clecak, N. J. and Willson, C. G., "Airborne Contamination of a Chemically AmplifiedResist.I. Identification of Problem", Chem.Mater., Vol. 5, pp 348, 1993
Nemitz, E., Sutton, M. A., Wyers, G. P., Otjes, R. P., Schjoerring, J. K., Gallagher, M. W., Parrington, J., Fowler, D. and Choularton, T. W., “Surface/atmosphere exchange and chemical interaction of gases and aerosols over oilseed rape”, Agricultural and Forest Meteorology, Vol. 105, pp427-445, 2000
NIOSH Manual of Analytical Methods (NMAM), No. 7903, National Institute for Occupational Safety and Health (NIOSH), Fourth Edition, 1994.
Oikawa, A., Hatakenaka, Y., Ikeda, Y., Kokubo, Y., Tanishima, M., Santoh, N. and Abe, N., "Effect of Reducing Contamination Concentration When Patterning a Chemically Amplified Positive Resist", Proceedings of Spie, Vol. 2438, pp 599-608, 1995
Pate, K. T., “Examining the Design, Capabilities, and Benefits of Bulk Chemical Delivery System”, Microcontamination Vol. 9, No. 10, pp. 25, 1991
SEMI F21-95, SEMI standard, Semiconductor Equipment and Materials International, 1995
Tamaoki, M., Nishiki, K., Shimazaki, A., Sasaki, Y. and Yanagi. S. “The effect of airborne contaminants in the cleanroom for ULSI manufacturing process” Advanced Semiconductor Manufacturing Conference and Workshop, ASMC 95 Proceedings. IEEE/SEMI. pp. 322 —326. 1995
The International Technology Roadmap for Semiconductors 2001 Edition ─ Yield Enhancement, SEMATECH, pp 11, 2001
Tsai, C. J., Huang, C. H., Wang, S. H. and Shin, T. S., “Design and testing of a personal porous-metal denuder”, Aerosol Sci. Technol. Vol 35, pp 1-6, 2001.
Vigil, J. C., Barrick, M. W. and Grafe, T. M., "Contamination Control for Processing DUV Chemically Amplified Photoresists", Proceedings of Spie, Vol. 2438, pp 626-643, 1995
Yamashita, A., Taguchi, T. and Watanabe, T., "Direct Evaluation of Airborne Contamination in Chemically Amplified Resist Films", Proceedings of Spie, Vol. 2438, pp 617-625, 1995
Yasuhiro Matsuyoshi, Yuuichi Satoh, Tsutomu Shinozaki, “High-Speed and Multiple-point Ammonia gas Monitor System”, IEEE 1999
“標準分析參考方法2401”,行政院勞委會勞工安全研究所(IOSH),1994
“標準分析參考方法2901”,行政院勞委會勞工安全研究所(IOSH),1991
“空氣中無機酸類之檢測方法NIEA A426.71B”,行政院環保署環境檢驗所(NIEA),1990
“空氣中無機酸類之檢測方法NIEA A435.70C”,行政院環保署環境檢驗所(NIEA)。1997
王榮德,『硫酸暴露作業工人之長期健康危害研究』,行政院勞委會勞工安全研究所委託研究報告,1998
大西謙之、和田陽、黃寶川,“半導體廠超級無塵室的化學污染和“PURATEX”化學過濾器之介紹”,電子月刊, vol.5, No. 9, pp. 164-168. 1999
環境檢驗室品質管理相關文件,環保署環檢所,民88年1月4日函發。
採樣分析方法通則,勞工安全衛生研究所採樣分析參考方法資料庫,勞工安全衛生研究所。http://www.iosh.gov.tw/anmethod.htm. 民91年6月10日
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔