跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施安琪
研究生(外文):Shih An-chi
論文名稱:藻類存在對濁度混沈去除之影響
論文名稱(外文):The Effect of Algae on Coagulation in Turbid Water
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Huang Chih-pin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:115
中文關鍵詞:混凝藻類高嶺土膠羽特性
外文關鍵詞:coagulationalgaekaolinfloc characteristics
相關次數:
  • 被引用被引用:22
  • 點閱點閱:721
  • 評分評分:
  • 下載下載:161
  • 收藏至我的研究室書目清單書目收藏:1
科技發達之今日,水質日趨惡化,尤其國內水體受到污染造成富含藻類之優養化水體,影響淨水程序之混沈效果,而藻類存在對混沈效果之影響程度一直未深入探討,因此本研究以單純顆粒及藻類為對象,在控制條件下進行混凝沈澱試驗,期能清楚區分混凝劑在兩顆粒共存下之分配比率。本研究以純種單細胞綠藻-小球藻(Chlorella vulgaris)作為水中生物顆粒之來源,以高嶺土為水中之無機顆粒,並調整高嶺土與藻類之混合比例,模擬自然原水中無機顆粒與藻類共存及藻類含量不一的情況,而研究中主要使用的混凝劑為多元氯化鋁(PACl)及硫酸鋁(Alum) 。
結果發現不論是以PACl或是Alum為混凝劑時,高嶺土所耗用之混凝劑量均較藻類多,其最適加藥量下之殘餘濁度值也較高,而此兩者之混凝機制均顯示以電性中和為主時所需之劑量低且混凝效果良好。而高嶺土與藻類以等濁度混合之試驗中顯示以PACl混凝效果之最佳,PFS次之,而Alum則最差。同時也發現混合水樣之混凝特性介於純藻及純高嶺土之混凝特性間,而整體之混凝特性以藻類為主導。此外,在不同顆粒混合比例下之混凝試驗中顯示隨著含藻比例的增加,高嶺土的去除效率隨之增加,因此藻類的存在確實可提升高嶺土的去除。而在膠羽特性分析的結果則顯示高嶺土所形成之膠羽較小、沈降速度慢但卻較為緻密,藻類膠羽較鬆散,但由於藻類膠羽較大所以其沈降速度比高嶺土稍微快一些。而隨著藻類比例的增加,膠羽粒徑及沈降速度均逐漸增加,膠羽密度卻是呈相反的變化。
Raw water quality is deteriorating because of the excessive development of industries. Industrial pollution has caused eutrophication in surface water. It is speculated that algae may affect the coagulation and sedimentation processes in water treatment. The purpose of this study was to separate the coagulation between the simple inorganic particle and algae. Kaolin was the inorganic particle and Chlorella vulgaris was the biological particle used in this study. Synthetic water was prepared by mixing these two particles in different ratio to simulate the natural water. The coagulants used were aluminum sulfate (Alum) and polyaluminum chlorides (PACl).
The result shows that kaolin consumes more coagulant than Chlorella, which also yields higher residual turbidity. For both particles, better coagulation results and less dosage were associated with the charge neutralization mechanism. The test in which equal turbidity of kaolin and algae was used showed that PACl was the most effective coagulant, followed by PFS, with Alum being the least. At the same time, the coagulation characteristic of the mixed water was between those of the pure kaolin and Chlorella, but Chlorella is predominant. Results also showed that kaolin removal increased with the ratio of algae rose, which suggested that the presence of algae promoted the kaolin removal. The floc size from kaolin coagulation was small, therefore the flocs settled slowly and denser. The flocs of algae were bigger, settled faster but much looser. As the ratio of algae increased, the size of the floc and the settling velocity increased but the density decreased.
目 錄
目次 頁次
中文摘要………………………………….……………………...……..I
英文摘要…………………………………………..…….……………..II
誌謝…………………………………………………………...………..III
目錄…………………………………………………………...………..IV
表目錄………………………………………………………………....VI
圖目錄…………………………………………..…………………….VII
第一章 緒論…………………………………………...……………..1
1.1 研究緣起……………………………………………………….1
1.2 研究目的……………………………………………………….2
第二章 文獻回顧與理論基礎…………………………………….3
2.1 淨水混凝之操作……………………………………………….3
2.1.1 混凝機制及相關理論…………………………………..4
2.1.2 混凝劑種類之影響……………………………………..6
2.2 淨水程序去除藻類…………………………………….……..11
2.2.1 不同淨水程序去除藻類之效果………………………11
2.2.2 混凝去除藻類…………………………………………15
2.3 膠羽聚集與膠羽特性之分析………………………………...17
2.3.1 光纖膠羽偵測儀………………………………………17
2.3.2 膠羽特性之分析………………………………………19
第三章 實驗材料、設備與方法………………………………..22
3.1 材料與設備…………………………………….…………..…22
3.1.1 人工原水………………………………………………22
3.1.2 混凝劑…………………………………………………26
3.1.3 設備……………………………………………………27
3.2 實驗方法……………………………………………………...29
3.2.1 藻類培養方法…………………………………………29
3.2.2 顆粒與綠藻濃度計數…………………………………33
3.2.3 瓶杯試驗………………………………………………35
3.2.4 沈降試驗………………………………………………38
3.2.5 顆粒聚集分析…………………………………………41
3.3 實驗程序……………………………………………………...43
第四章 結果與討論………………………………..……………...45
4.1 高嶺土與藻類之基本混凝特性……………………………...45
4.1.1 藻類之基本混凝特性…………………………………45
4.1.2 高嶺土之基本混凝特性………………………………53
4.1.3 .高嶺土與藻類混凝特性之比較………………………57
4.2 混合水樣之混凝-含等濁度之藻類………….……………..59
4.2.1 人工原水………………………………………………59
4.2.2 淨水廠原水……………………………………………64
4.2.3 不同混凝劑之影響……………………………………71
4.3 藻類存在對混凝去除濁度之影響…………………………...76
4.3.1 高嶺土與藻類相互影響之情形………………………76
4.3.2 濁度去除受含藻比例之影響…………………………83
4.3.3 加藥量決定受含藻比例之影響………………………91
4.4 藻類存在對生成膠羽特性之影響…………….…………..…96
4.4.1 藻類存在對生成膠羽特性之影響…..…..……………96
4.4.2 高嶺土及藻類顆粒不同混合比例下之膠羽特性…..103
第五章 結論……………………………………………………….110
參考文獻………………………………………………….………….111
LIST OF TABLES
Table 2.1 Comparative algae removal efficiencies using various treatment lines(in optimized conditions)………...………………………..13
Table 3.1 Composition of culture media for Chlorella sp………………...………..31
Table 4.1 Optimal dosages for kaolin and Chlorella with various turbidity…………………………………………………………………58
Table 4.2 Characteristics of synthetic water and raw water………………………60
Table 4.3 Optimal dosages and residual turbidity for kaolin, Chlorella and synthetic water at 40 NTU………………………….…………………..…………62
Table 4.4 The residual turbidity, absorbance and zeta potential at the optimal dosage of raw water with/without Chlorella……………………………………66
Table 4.5 Optimal residual turbidity and absorbance of different coagulants……75
Table 4.6 Turbidity, absorbance and removal rate with different kaolin and Chlorella mixing ratio at 0.5 mg/l PACl dosage……………….………………….85
Table 4.7 Flocs of Chlorella, kaolin and mixed water after coagulated at 2.0 mg/l PACl…………………………………………………………………….97
Table 4.8 Average size and projection area of flocs formed from Chlorella, kaolin and mixed water at 2.0 mg/l PACl coagulation (calculated from image analysis system )…………………………………………………….…100
Table 4.9 Floc characteristics of Chlorella / kaolin mixed water coagulated with 2.0 mg/l PACl……………………………………………………………...104
Table 4.10 Average size and projection area of flocs formed from Chlorella / kaolin mixed water at 2.0 mg/l PACl coagulation (calculated from image analysis system)……………………………………………….……….107
LIST OF FIGURES
Fig. 2.1 Design and operation diagram for alum coagulation…………………….…8
Fig. 2.2 Aggregation of Al13 species……………...…………………..……………10
Fig. 3.1 Particle size distribution of kaolin……………………………………..…23
Fig. 3.2 Particle size distribution of Chlorella sp……………..……………………24
Fig. 3.3 Chlorella vulgaris (1000×)………………………………………………...25
Fig. 3.4 Schematic diagram for algae culture……………………………………....30
Fig. 3.5 Growth curve of Chlorella sp……………………...……………………...32
Fig. 3.6 Relationship of absorbance, turbidity and particle count of Chlorella sp…34
Fig. 3.7 Jar tester…………………………………………………………………...36
Fig. 3.8 Laboratory G curve for flat paddle in the gator jar………………………..37
Fig. 3.9 Construction of Free Settling Test………………………………………...40
Fig. 3.10 Construction of PDA Monitoring System………………………………..42
Fig. 3.11 Schematic description of this study……………………………………...44
Fig. 4.1 Effects of alum dosage on residual turbidity and zata potential of Chlorella. (a) Initial turbidity = 40 NTU, (b) Initial turbidity = 20 NTU…………….47
Fig. 4.2 Settling condition at different settling time of Chlorella. Initial turbidity = 40 NTU…………………………………………………48
Fig. 4.3 Effects of alum dosage on residual turbidity and (a)particle count, (b)absorbance of Chlorella. Initial turbidity = 20 NTU……………...……50
Fig. 4.4 Effects of PACl dosage on residual turbidity and zata potential of Chlorella. (a) Initial turbidity = 40 NTU. (b) Initial turbidity = 20 NTU…………….52
Fig. 4.5 Effects of alum dosage on residual turbidity and zata potential of kaolin. (a) Initial turbidity = 40 NTU. (b) Initial turbidity = 20 NTU………………...54
Fig. 4.6 Effects of PACl dosage on residual turbidity and zata potential of kaolin. (a) Initial turbidity = 40 NTU. (b) Initial turbidity = 20 NTU………………..56
Fig 4.7 Effects of (a)alum (b)PACl dosage on residual turbidity at different mixed proportion of Chlorella and kaolin………………………………………..61
Fig. 4.8 Settling condition at different overflow rate of (a) raw water and (b) raw water mixed with Chlorella by using PACl. Initial turbidity = 16 NTU….67
Fig. 4.9 Settling condition at different overflow rate of (a) raw water and (b) raw water mixed with Chlorella by using Alum. Initial turbidity = 16 NTU….69
Fig. 4.10 Effects of (a)PACl and Alum dosage (b)PFS dosage on residual turbidity and zata potential of kaolin and Chlorella mixed water. Initial turbidity = 40 NTU………………………………...……..……….72
Fig. 4.11 Settling condition at different overflow rate of synthetic water by using (a) Alum, (b)PACl, (c)PFS. Initial turbidity=40 NTU………………73
Fig. 4.12 Relationship between turbidity and absorbance of kaolin and Chlorella..77
Fig. 4.13 Residual turbidity of synthetic water contributed by kaolin and Chlorella. Initial turbidity = 40 NTU…………………………………………………80
Fig. 4.14 Comparison of (a) kaolin and (b) Chlorella those from mixed water sample contributed by kaolin or Chlorella.………………………………..81
Fig. 4.15 Fit curves of (a) kaolin and (b) Chlorella those from mixed water sample contributed by kaolin or Chlorella.…………………...…………………...82
Fig. 4.16 (a) Initial and residual turbidity, (b)residual turbidity contributed by kaolin and Chlorella, for different mixing proportion of kaolin and Chlorella at 0.5 mg/l PACl dosage………………………………...…………………84
Fig. 4.17 Coagulation mode of Kaolin and Chlorella at low PACl dosage with the mixing ratio of 1:1…………….……………………………….87
Fig. 4.18 PDA ratio output of kaolin and Chlorella with the mixing ratio of 1:1 at low PACl dosage………………………………………………………..89
Fig. 4.19 Micro-graph of kaolin and Chlorella with the mixing ratio of 1:1 at (a) 5 min(1000×) (b) 10 min(1000×) after slow mixing and (c) after settling(400×)…………………………………………………………...90
Fig. 4.20 Residual turbidity of synthetic water with five mixing ratio at different PACl dosage……………….……..…………..…………………………..92
Fig. 4.21 Kaolin removal rate of synthetic water with five mixing proportion at different PACl dosage…………………………………….………………..94
Fig. 4.22 Chlorella removal rate of synthetic water with four mixing proportion at different PACl dosage…………………….………………………………..95
Fig. 4.23 Settling condition of (a) Chlorella, (b)kaolin, and (c)mixed water containing Chlorella and kaolin of equal turbidity at different overflow rate. Initial turbidity=40 NTU.……………...……………..…99
Fig. 4.24 Chlorella floc (×40)…………………………………………………….101
Fig. 4.25 Kaolin floc (×40)…………………………………………………...…101
Fig. 4.26 Floc formed from kaolin and Chlorella combined with equal turbidity(×40)………………………………..………………………….102
Fig. 4.27 Settling condition of (a) 1/1 and (b) 1/10 ratio of kaolin / Chlorella mixed water of at different overflow rate……………………………………..105
Fig. 4.28 Settling condition of (a) 1/20 and (b) 1/40 ratio of kaolin / Chlorella mixed water of at different overflow rate…………………………………….106
Fig. 4.29 Floc formed from kaolin and Chlorella with mixing ratio of 1:1……....108
Fig. 4.30 Floc formed from kaolin and Chlorella with mixing ratio of 1:10……..108
Fig. 4.31 Floc formed from kaolin and Chlorella with mixing ratio of 1:20……..109
Fig. 4.32 Floc formed from kaolin and Chlorella with mixing ratio of 1:40……..109
Adachi, Y. and Tanaka, Y. (1997) Settling Velocity of an Aluminum-Kaolinite Floc. Wat. Res., 31(3), 449-454.
Amirtharajah, A. and Mills, K. M. (1982) Rapid-mix Design for Mechanism of Alum Coagulation. J. AWWA., 74, 210-216.
Antoine, M. and Benedicte, W. (1998) Preozonation Couple Flotation Filtration: Successful Removal of Algae. Wat. Sci. Tech., 37(2), 65-73.
Armenter, J. LI., J. Cristia and LI. Matia (1998) Preatment Options for Water with High Disinfection Byproducts Formation Potential. Water Supply, 16, Nos 1/2, Madrid, 543-557.
AWWA. (1992) Operation Control of Coagulation and Filtration Process. Chapter 1 Jar Testing., AWWARF. Ed., 1-41.
Benoufella, F., Laplanche, A., Boisdon, V., and Bourbigot M. M. (1994) Elemination of Microcystis Cyanobacteria (Blue-Green Algae) by an Ozonflotation Process : A Pilot Plant Study, Wat. Sci. Tech., 30(8), 245-257.
Bernhardt, H. and Clasen, J. (1991) Flocculation of Micro-Organisms. J. Water SRT-Aqua, 40(2), 76-87.
Chihg, H. W., Tanaka, T. A. and Elimelech M. (1994) Dynamics of Coagulation of Kaolin Particles with Ferric Chloride. Wat. Res., 28, 559-569.
Dempsey, B. A. and Men, X. (1989) Bench-scale Production, Characterization, and Application of Polyaluminum Sulfate (PAS). AWWARF.
Dentel S. K. and Gossett J. M. (1988) Mechanisms of Coagulation with Aluminum Salts. J. AWWA., 80, 187-197.
Edzwald J. K., Bottero J. Y., Ives K. and Klute R. (1998) Particle Alteration and Particle Production Process. Treatment Process Selection for Particle Removal. Edited by Mcewen, J. B., AWWARF, 73-122.
Eisenlauer, J. and Horn D. (1985) Fiber-optic Senor for Flocculant Dose Control in Flowing Suspension. Colloid and Surfaces., 14, 121-134.
Francois, R. J. (1987) Strength of Aluminum Hydroxide Flocs. Wat. Res., 21, 1023-1030.
Gregory, J. (1985) Turbidity Flutuations in Flowing Suspension, J. Colloid Interface Sci., 105, 357-372 .
Gregory, J. and Nelson W. D. (1986) Monitoring of Aggregates in Flowing Suspension, Colloid and Surfaces, 18, 175-188 .
Gregory J. (1993) Stability and Flocculation of Suspensions. Processing of Solid-Liquid Suspensions, Shamlou P. A. ed., 59-92.
Han, M. and Lawer, D. F. (1992) The Insignificance of G in Flocculation. J. AWWA., 85, 79-91.
Higashitani, K. and Shibata, T. (1987) Formation of Pellet Flocs from Kaolin Suspension and Their Properties. J Chem. Eng. Of Japan., 20, 152-157.
Huang, C. P. and Liu, C. B. (1996) Automatic Control for Chemical Dosing in Laboratory-scale Coagulation Process by Using an Optical monitor. Wat. Res., 30, 1924-1929.
Huang, C. P. and Chen, G. S. (1996) Use of the Fiber-optical Monitor in Evaluating the State of Flocculation. Wat. Res., 30, 2723-2727.
Jiang, Q. and B. E. Logan. (1991) Fractal Dimensions of Aggregates Determined from Steady-state Size Distributions. Environ. Sci. Technol., 25, 2031-2038.
Jiang, Q. and B. E. Logan. (1996) Fractal Dimensions of Aggregates form Shear Devices. J. AWWA, 88, 100-113.
Kan, C. C. and Huang, C. P. (1998) The Significance of G in Flocculation. Wat. Res., 32, 2660-2668.
Kevin, H., Thomas L. and Young, C. T. (1998) The Significance of G in Flocculation. Wat. Res., 32, 2660-2668.
Lawler, D. F., Izurieta, E. and Kao, C. P. (1983) Changes in Particle Size Distributions in Batch Flocculation. J. AWWA., 75, 604-612.
Lee D. J. (1994) Floc Structure and Bound Water Content in Excess Activated Sludge. J. Ch. I. Ch. E., 25, 201-207.
Lee D. J., Chen G. W., Liao Y. C. and Hsieh C. C. (1996) On the Free-settling Test for Estimating Activated Sludge Floc Density. Wat. Res., 30, 541-550.
Letterman, R. D., Amirtharajah, A. A. and O’Melia, C. R. (1999) Coagulation and Flocculation. Water quality and treatment. Letterman, R. D., Ed.; McGraw-Hill Inc. Press, 6.1-6.66.
Martin, R. (1998) Effects and Mechanisms Involved in Preoxidation and Particle Separation Process .Wat. Sci. Tech., 37(10), 1-7
Matsui, Y., Yuasa, A., Furuya, Y. and Kamei, T. (1998) Dynamic Analysis of Coagulation with Alum and PACl. J. AWWA., 90, 90-106.
McEwen, J. B. (1998) Treatment Process Selection for Particle Removal. AWWARF., 204-206.
Mouchet, P. and Bonnelye, V. (1998) Solving Algae Problems: French Expertise and World-wide Applications, J. Water SRT-Aqua, 47(3), 125-141
Mühle, K. and Domasch, K. (1990) Floc Strength in Bridging Flocculation. Chenical Water Wastewater Treatment, edited by H. H. Hahn and R. Klute, 105-115.
O’melia, C. R., Gray, K. A. and Yao, C. (1989) Polymeric Inorganic Coagulants. AWWARF.
Peterson H. G., Hrudey S. E. and Cantin I. A. (1995) Physiological Toxicity, Cell Membrance Damage and the Release of Dissolved Organic Carbon and Geosmin by Aphanizomenon Floc-aquae after Explore to Water Treatment Chemicals, Wat. Res., 29(6), 1515-1523.
Randtke, S. J. (1988) Organic Contaminant Removal by Coagulation and Related Process Combinations. J. AWWA., 80(3), 40.
Reynolds, T. D. and Richards, P. A. (1995) Coagulation and Flocculation. Unit Operation and Processes in Environmental Engineering, PWS Publish Company Press 166-218.
Richard, Y. and Dalga, N. (1993) Preozonation Relation to Algae Removal a Case Study: the Plant of Mont-Valerien. Ozone Science and Engineering, 15, 445-456
Sander L. M. (1984) Theory of Fractal Growth Processes. Kinetics of Aggregation and Gelation, Gamily F. and Landau D.Pl. ed., 13-18.
Steyberg, M. C., Geldenhuys, J. C. and Pieterse, J. H. (1996 b) Chlorine and Chlorine Dioxide: Pre-oxidants Used as Algocide in Potable Water Plants. J. Water SRT-Aqua, 45(4), 162-170.
Tambo, N. and Watanabe, Y. (1979) Physical Charactertics of Floc-I. The Floc Density. Wat. Res. 13, 409-419.
Van Benschoten J. E. (1992) Effects of Temperature and pH on Residual Aluminum for Alum and Polyaluminum Coagulants. Wat. Supply, 4(10), 49.
Vlaski, A., van Breemen, A. N., and Alaerts, G. J. (1996) Optimization of Coagulation Condition for the Removal of Cyanobacteria by Dissolved Air Flotation or Sedimentation. J. Water SRT-Aqua, 45(5), 253-261.
Wang, L. K. (1987) Poly Iron Chloride and Poly Aluminum Chloride. Technical Rept..
Wilson, D., Lewis, J., Noguria, F., Faivre, M., Boisdon, V. (1993) The Use of Ozoflotation for the Removal of Algae and Pesticide From a Stored Lowland Water. Ozone Science and Engineering, 15, 481-496.
Yasuhisa A. and Yoshikazu T. (1997) Settling Velocity of an Aluminum-kaolinite floc. Wat. Res., 31, 449-454.
甘其銓 (2002) 淨水混凝之快混參數決定:去穩機制與聚集動力解析,國立交通大學環境工程研究所博士論文。
林士正 (1996) 利用光學偵測方法監測水中絲狀顆粒膠凝狀態之研究,國立交通大學環境工程研究所碩士論文。
行政院環境保護署 (1998) 全國八十七年度水庫監測結果,行政院環境保護署網站,www.epa.gov.tw。
秋葉道宏等 (1992) 2種綠藻混凝特性相關基礎之研究,水道協會雜誌。
陳是瑩、曾怡禎 (1986) 澄清湖藻類圖鑑,成功大學生物系。
陳俊哲 (2000) 不同混凝劑對原水濁度去除效能之評估及生物濾床前處理之影響,國立交通大學環境工程研究所碩士論文。
曾四恭 (1991) 水庫優養化對水質影響及水質處理研究(第二年),行政院環境保護署。
曾四恭 (1989) 傳統淨水程序對水源中藻類之去除及其改善方法之研究(二) ,台灣省自來水公司。
葉宣顯 (1999) 澄清湖高級淨水處理模型廠試驗研究(第二年),台灣省自來水公司。
溫清光等 (1995) 澄清湖曝氣工程效益評估,台灣自來水公司。
劉志仁 (1996) 水庫優養化對水質影響及水質處理研究,台灣大學環境工程研究所博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊