跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃心琦
研究生(外文):Hsin-chi Huang
論文名稱:氧化鐵覆膜活性碳催化氧化及吸附苯甲酸之研究
論文名稱(外文):Catalytic Oxidation and Adsorption of Benzoic Acid by Granular Activated Carbon Supported Iron Oxide
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Chihpin Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:113
中文關鍵詞:氧化鐵覆膜活性碳流體化床
相關次數:
  • 被引用被引用:5
  • 點閱點閱:457
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:0
工業界所採用的傳統Fenton處理方法,一般多應用於有機性廢水的處理,由於其反應快且操作簡易,因此廣為業界所採用,但傳統Fenton法會產生大量污泥,污泥的處置與處理亦是一大問題。
本研究使用兩種不同材質的活性碳(A,B)為擔體,並比較以這兩種活性碳為擔體之FeOOH/GAC (氧化鐵覆膜活性碳) 對苯甲酸(BA)的去除效率。研究初期,填入兩種不同的活性碳於流體化床反應槽中,持續進流FeSO4、H2O2、BA,長晶4、6、8週,以探討FeOOH/GAC對苯甲酸之吸附、催化及氧化特性的變化。長晶後的觸媒顆粒都會取出做批次氧化及吸附實驗,以得對苯甲酸的去除效率及吸附等溫線,選出較適合作為擔體之活性碳。
比較兩種原始活性碳的特性發現,A之BET比表面積較B高,且我們以H2O2氧化原始活性碳,反應六個小時之後測其所釋出之TOC濃度,發現A所消耗的H2O2為B之兩倍但釋出的TOC濃度卻只有B的一半,由此得知A的性質較B穩定。養晶四週及六週時,FeOOH/GACA之總鐵量(≣Fet)、BET表面積及對苯甲酸的去除效率均較FeOOH/GACB高,且隨長晶時間增加,兩種FeOOH/GAC的總鐵量(≣Fet)增加、BET表面積減少、活性碳的吸附能力下降。初期結果顯示A對苯甲酸的處理較佳,所以在後續八週的研究中針對A活性碳做更深入的探討,FeOOH/GACA之異相催化氧化反應,四、六、八週之擬一階反應速率常數k值分別為0.025、0.0422、0.0403 hr-1,結果顯示四週到六週時,氧化能力隨FeOOH/GAC上的總鐵含量增加而上升,但當總鐵含量增加到一上限時,氧化能力已趨於穩定﹔同相及異相共存之氧化反應八週效果最好,其次是六週。
Conventional Fenton process is generally applied for organic wastewaters treatment. This method has received great industrial attention because it is fast and easy to operate. This study intends to improve the fluidized-bed Fenton reactor for advanced wastewater treatment process.
Two granular activated carbon-supported FeOOH systems, A- and B shell-based, replace the granular brick support and their performances are compared. The crystals are allowed to grow on the surfaces of the granular activated carbon (GAC) for 4, 6, and 8 weeks while benzoic acid (BA), H2O2 and FeSO4 are continuously fed into the column. The adsorption characteristics of BA on and the catalytic oxidation of the FeOOH/GAC system are monitored. The GAC-supported FeOOH crystals are isolated from the reactor and used in the batch BA adsorption and oxidation experiments.
Before the coating of FeOOH onto the GAC surface, the specific surface area of the A-based GAC (GACA) is higher than that of the B-based GAC (GACB), while the GACB is more susceptible to oxidation. After four to six weeks’ incubation, the specific surface area, and BA removal of the FeOOH/GACA are higher than those of FeOOH/GACB. The total iron contents of the two FeOOH/GAC increase whereas the specific surface area and the adsorption decrease with the incubation time. Since the GACA system has a better removal of BA, the rest of the study concentrates on this system. The variation in reaction rate constants of the heterogenous catalytic oxidation of FeOOH/GACA indicates that the oxidation ability increases with the total iron content increase in the first four to six weeks of incubation. From six to eight weeks, the oxidation ability gradually stabilized while the total iron content keeps increasing. In the system involving both heterogenous and homogenous oxidation, the BA removal efficiency of 8-week FeOOH/GACA is better than the 6-week FeOOH/GACA does.
目 錄
中文摘要
英文摘要
目錄 Ⅰ
圖目錄 Ⅲ
表目錄 Ⅵ
第一章 前言 1
1.1研究動機及目的 1
第二章 文獻回顧 3
2.1Fenton反應的機制 3
2.2各種觸媒之異相催化反應 5
2.2.1以天然砂粒為觸媒 5
2.2.2.以鐵氧化物為觸媒 6
2.2.3其他合成觸媒 8
2.3鐵氧化物的合成 9
2.4活性碳吸附 13
2.4.1活性碳之種類 13
2.4.2吸附劑、吸附質及溶劑影響活性碳吸附之因素 14
2.4.3過氧化氫存在的影響 19
2.4.4氧化鐵覆膜 20
2.5活性碳的再生方法 20
2.6流體化床中之結晶作用 21
2.7 Lindemann-Langmuir反應動力常數 22
第三章 實驗方法與設備 23
3.1實驗設備 23
3.2材料與分析方法 26
3.2.1材料 26
3.2.2溶液分析項目 26
3.2.3 FeOOH/GAC特性分析 29
3.3氧化鐵覆膜的製備 30
3.4批次實驗 31
3.4.1恆溫吸附 31
3.4.2化學氧化 31
第四章 結果與討論 33
4.1FeOOH/GAC物性分析 34
4.1.1氧化鐵覆膜活性碳擔體上之含鐵量 34
4.1.2 BET分析 38
4.1.3 微觀照片 43
4.2不同活性碳吸附苯甲酸能力之比較 46
4.2.1兩種原始活性碳吸附等溫線比較 46
4.2.2不同養晶時間吸附苯甲酸能力比較 52
4.3不同活性碳對苯甲酸氧化效果評估 61
4.3.1 H2O2對原始活性碳的影響 61
4.3.2單純異相催化 67
4.3.3同相、異相共存催化氧化 87
4.4Lindemann-Langmuir反應動力常數 105
第五章 結論與建議 112
附錄
LIST OF FIGURES
Figure 3.1 Schematic description of the experimental set-up for crystallization 24
Figure 3.2. Schematic description for the approaches of this study 25
Figure 3.3. Schematic description for batch oxidation trials 32
Figure 4.1. Total iron and oxalate-soluble iron contents of FeOOH/GAC 36
Figure 4.2. Ratio of ≡Feo /≡Fet on the surface of FeOOH/GAC during different incubation times 37
Figure 4.3. Specific surface areas of original and FeOOH-supported GAC 41
Figure 4.4. Pore volumes of original and FeOOH-supported GAC 42
Figure 4.5. Scanning electron micrograph of original GACA 44
Figure 4.6. Scanning electron micrograph of FeOOH/GACA with 8-week incubation of
crystals 45
Figure 4.7. Schematic description for adsorption mechanism of benzoic acid by activated carbon 48
Figure 4.8. (a) Langmuir isotherms of BA adsorption by original GACA and GACB at pH 3〜4 49
Figure 4.8. (b) Langmuir isotherms of BA adsorption by original GACA and GACB at pH 5 50
Figure 4.9. Langmuir isotherms of BA adsorption by FeOOH supported-GACA and GACB with 4-week incubation of crystals 53
Figure 4.10. Langmuir isotherms of BA adsorption by FeOOH supported-GACA and GACcoconu.with 6-week incubation of crystals 57
Figure 4.11. Langmuir isotherms of BA adsorption by FeOOH/GACA with
4, 6, 8-week incubation of crystals 59
Figure 4.12. (a) Residual H2O2 concentrations of original GACA and GACB oxidized by 200 mg/l H2O2 63
Figure 4.12. (b) Residual TOC concentrations of original GACA and GACB oxidized by 200 mg/l H2O2 64
Figure 4.13 (a) Residual BA after adsorption by FeOOH/GAC (○ and □ ) or adsorption/oxidation by FeOOH/GAC and H2O2 (● and ■ ) without Fe2+ at pH 3.5 70
Figure 4.13 (b) Residual TOC after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■ ) and H2O2 without Fe2+ at pH 3.5 71
Figure 4.13 (c) Residual Fet concentration after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 without Fe2+ at pH 3.5 72
Figure 4.14 (a) Residual BA after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 without Fe2+ at pH 3.5 75
Figure 4.14 (b) Residual TOC after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 without Fe2+ at pH 3.5 76
Figure 4.14 (c) Residual Fet concentration after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 without Fe2+ at pH 3.5 77
Figure 4.15 (a) Residual BA after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 without Fe2+ at pH 3.5 80
Figure 4.15 (b) Residual TOC after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■ ) and H2O2 without Fe2+ at pH 3.5 81
Figure 4.15 (c) Residual Fet concentration after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 without Fe2+ at pH 3.5 82
Figure 4.16 (a) Effects of incubation times of crystals on the kinetics of BA adsorption (□, ○ and △) or adsorption/oxidation (■, ● and ▲)by FeOOH/GACA 84
Figure 4.16 (b) Effects of incubation times of crystals on the kinetics of BA oxidation(■, ● and ▲) by FeOOH/GACA 85
Figure 4.17 Effects of incubation times of crystals on the residual TOC of BA adsorption(□, ○ and △) or adsorption/oxidation(■, ● and ▲) by FeOOH/GACA 86
Figure 4.18 (a) Residual BA after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 at pH 3.5 90
Figure 4.18 (b) Residual TOC after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■)and H2O2 at pH 3.5 91
Figure 4.18 (c) Residual Fet concentration after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 at pH 3.5 92
Figure 4.19 (a) Residual BA after adsorption by FeOOH/GAC or adsorption/oxidation by FeOOH/GAC and H2O2 at pH 3.5 95
Figure 4.19 (b) Residual TOC after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 at pH 3.5 96
Figure 4.19 (c) Residual Fet conc. after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 at pH 3.5 97
Figure 4.20 (a) Residual BA after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 at pH 3.5 99
Figure 4.20 (b) Residual TOC after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 at pH 3.5 100
Figure 4.20 (c) Residual Fet concentration after adsorption by FeOOH/GAC (○ and □) or adsorption/oxidation by FeOOH/GAC (● and ■) and H2O2 at pH 3.5 101
Figure 4.21 (a) Effects of incubation times of crystals on the kinetics of BA adsorption (□, ○ and △) or adsorption/oxidation (■, ● and ▲)by FeOOH/GAC 103
Figure 4.21 (b) Effects of incubation times of crystals on the residual TOC of BA adsorption (□, ○ and △) or adsorption/oxidation (■, ● and ▲)by FeOOH/GAC 104
Figure 4.22 Linear relationship between 1/R and 1/C at 4-week incubation of crystals 108
Figure 4.23 Linear relationship between 1/R and 1/C at 6-week incubation of crystals 109
Figure 4.24 Linear relationship between 1/R and 1/C at 8-week incubation of crystals 110
LIST OF TABLES
Table 3.1 Specification of two types of activated carbon tested in the study 28
Table 4.1 Total iron and oxalate-soluble iron contents of FeOOH/GAC 35
Table 4.2 Surface properties of original and FeOOH-supported GAC 40
Table 4.3 Langumuir isotherms fitting of BA adsorption by original GACA 51
Table 4.4 Langumuir isotherms fitting of BA adsorption by original GACB 51
Table 4.5 Langumuir isotherms fitting of BA adsorption by FeOOH-supported GACA with 4-week incubation of crystals 54
Table 4.6 Langumuir isotherms fitting of BA adsorption by FeOOH-supported GACB with 4-week incubation of crystals 54
Table 4.7 Langumuir isotherms fitting of BA adsorption by FeOOH-supported GACA with 6-week incubation of crystals 56
Table 4.8 Langumuir isotherms fitting of BA adsorption by FeOOH-supported GACB with 6-week incubation of crystals 56
Table 4.9 Langumuir isotherms fitting of BA adsorption by FeOOH-supported GACA with 4, 6, 8-week incubation of crystals 60
Table 4.10 Weight loss of GACA oxidized by H2O2 65
Table 4.11 Weight loss of GACB oxidized by H2O2 66
Table 4.12. Reaction rate constants of BA heterogeneous oxidation by FeOOH/GACA ------------------------ ------111
Table 4.13 Adsorption constants derived from Langmuir equation and Lindermann-Langmuir equation 111
附 錄
附錄 1
圖1-1 各種活性碳之孔洞體積分布比較 2
圖1-2 各種活性碳之孔洞體積分布比較 3
表1-1 活性碳之孔洞體積分布 4
表1-2 活性碳之孔洞體積分布 5
表1-3 以H2O2氧化原始A活性碳之重量損失 6
表1-4 以H2O2氧化原始B活性碳之重量損失 7
T. and Suzuki M.(1994)Decomposing organic chlorine compounds in dry cleaning wastewater by Fenton’s reaction on reticulated iron . Water Sci. Technol. 30, 129-137.
Tyre B. W., Watts R. J. and Miller G. C. (1991) Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide. J. Environ. Qual. 20, 832-838.
Valentine R. L. and Wang H. C. A. (1998) Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide. J. Environ. Eng. 124(1), 31-38.
Wallis R. (1982) Environmental assessment of the SCRATA "ARCSTRACT" air-carbon arc extraction system. Annals of Occupational Hygiene. 25, 279-290.
Walling C. (1975) Fenton’s reagent revisited. Accounts Chem. Res. 8, 125-131.
Watts R. J., Udell M. D. and Monsen R. M. (1993) Use of iron minerals in optimizing the peroxide treatment of contaminated soils. Water Environ. Res. 65, 839-844.
李茂松、廖啟鐘、張王冠、邵信、倪慎如、李天菴(1998),”積體電路產業氫氟酸廢水結晶處理整合回收技術”工業污染防治工程實務技術研討會論文集, pp.433-452。
周珊珊、黃志彬、王瓊淑(1997),” 以顆粒化氫氧化物觸媒催化過氧化氫氧化苯甲酸之研究”, 第二十二屆廢水處理研討會論文集,pp.210-215。
周珊珊、黃耀輝、黃志彬(1998),”以流體化床觸媒反應槽氧化苯甲酸之研究”, 第二十二屆廢水處理研討會論文集,pp.573-581。
周珊珊(1999)”負載型FeOOH 流體化床的開發:可行性、反應動力及最適化的研究” 國立交通大學環境工程研究所博士論文。
盧明俊、陳重男、栗華新、詹益欽(1997)”利用針鐵礦催化過氧化氫分解二氯酚”, 第二十二屆廢水處理研討會論文集。
盧明俊、陳重男、陳世哲(1998)”探討針鐵礦表面催化過氧化氫分解氯酚類化合物”, 第二十三屆廢水處理研討會論文集。
謝有德(1997)”O3/GAC程序處理水中有機氯農藥” 國立交通大學環境工程研究所碩士論文。
王怡婷(2000)”以顆粒活性碳為單體之流體化床-Fenton中吸附、催化及化學氧化再生作用之探討” 國立交通大學環境工程研究所碩士論文。
工業污染防治技術服務團,”工業廢水活性碳處理” 工業污染防治技術手冊。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top