跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李正得
研究生(外文):Cheng-Te Lee
論文名稱:不同擔體表面處理程序對氧化鐵覆膜催化效能之影響
論文名稱(外文):Influence of Surface Treatment Processes on the Catalytic Activity of Supported Iron Oxide
指導教授:陳重男陳重男引用關係盧明俊盧明俊引用關係
指導教授(外文):Dr.Jong-Nan ChenDr.Ming-Chun Lu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:178
中文關鍵詞:粒狀活性碳過氧化氫異相催化法覆膜氧化鐵
外文關鍵詞:GAChydrogen peroxideheterogeneous reactioncoatingiron oxide
相關次數:
  • 被引用被引用:12
  • 點閱點閱:472
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
粒狀活性碳(GAC)因為具有相當大的比表面積、多孔結構和多樣的表面物性及化性,因此為一種常被使用於處理污染物質的良好吸附劑,或被應用於充當異相催化反應的催化劑。近年來亦有部分研究將負載型鐵氧化物或顆粒狀的固體催化劑(如石墨或是活性碳)實際應用於氧化程序中,還考慮將此種方法實際應用於對環境處理程序。故本研究乃利用三種不同的表面處理程序及三種不同的氧化鐵覆膜方式製造新式的活性碳擔體觸媒,以了解這些方式製成的觸媒,催化過氧化氫分解氯酚類化合物之影響效能。從不同表面處理程序的實驗結果中顯示,用過氧化氫此種強氧化劑清洗GAC對其表面物性不會造成影響,但以硝酸清洗,則會造成BET比表面積急減,平均孔徑增加、微孔隙體積減少。雖然硝酸洗過之活性碳其比表面積下降,吸附有機物的能力降低。但是卻會提升了此觸媒在異相催化中有效去除、有效降解有機物的比例。
在不同的氧化鐵覆膜方式之結果中顯示,石英砂覆膜了氧化鐵後,其催化過氧化氫之反應速率明顯提升,且其反應類似氧化鐵。但石英砂僅為一良好的覆膜擔體,對反應速率的增進無任何幫助。
而活性碳覆膜了氧化鐵後,反應的性質已不同於一般氧化鐵,其反應速率明顯大於一般氧化鐵,且覆膜後之催化分解過氧化氫及去除有機物、和脫氯作用的反應速率均較未覆膜的活性碳來的高,而三種不同覆膜方式所製成的觸媒,尤其以階段式加藥含浸的覆膜方式的觸媒最佳,其在氧化分解4-氯酚的效果最好,此外三種觸媒的效果皆在低pH值之去除效果較佳。此外發現覆膜型觸媒效果的好壞與表面所覆膜上去的含鐵量無絕對的關係。
GAC, a good adsorption, is often used of disposing polluted materials, or used of acting as the catalyst of heterogeneous reaction, owing to its enormous surface area, porous structure and characteristic flexibility. Recently, some researches put iron oxides or granular size solid catalysts (for example, graphite and activated carbon) to use in oxidation process, and they even consider to put this way practically using in the process of environmental disposal. This research is order to understand the influence of the surface treatment processes on the catalytic activity of supported iron oxide.
From the experiment of the disposal process, it shows that it doesn’t cause any effects on its surface by using H2O2 to wash GAC, but it does by using nitric acid; this may sharply reduce its specific surface area, make the average pore size increase, and the micropore volume decrease. Although GAC is washed by nitric acid which decreases the capability of absorbing organics, it highly increases the percentage of the rate of ER and ED in heterogeneous reaction. The stoichiometric efficiency, ER and ED, is defined individually as the ratio of the reduction and degradation amount of 4-CP to the decomposition amount of H2O2.
From the outcome of different iron oxide coated ways, it shows that the raising reactive rate of catalyzing H2O2 decomposition after silica sand is coated by iron oxide, and the reactive is similar to iron oxide, implying the role of the silica sand is only as a support. So silica sand is a good carrier for coated, but it is helpless to affect on the decomposition rate of H2O2.
However, after GAC is coated by iron oxide, the reaction is different from normal iron oxide; the rate of catalyst on certain modified base is faster than normal iron oxide apparently. Unlike the silica sand, GAC is not merely a carrier, and it does contribute to the catalytic activity on H2O2 decomposition. C-GAC has a better effect on decomposing H2O2, reducing and dechloring organics than uncoated GAC. The best coated way of GAC is to add drugs gradually and dip it in on multiple impregnation method. C-GAC gets its best removing effect at low pH condition; moreover, it doesn’t have any absolute relation between the iron quantity contained and the effects.
目錄
中文摘要
目錄…… I
圖目錄.. IV
表目錄.. VII
第一章 前 言 1
1-1 研究背景 1
1-2 研究目的與內容 2
第二章 文獻回顧 4
2-1 氯酚類化合物之概論 4
2-1-1氯酚類化合物之特性 4
2-1-2 氯酚類化合物之處理方式 6
2-1-2-1 生物處理法 6
2-1-2-2 高級氧化處理法 8
2-2 氧化鐵之基本特性及其合成 12
2-2-1 氧化鐵的種類 13
2-2-2 晶體的形成 13
2-2-2-1 成核作用 13
2-2-2-2 晶體的成長 14
2-2-2-3 晶核過程對晶體的影響 15
2-2-3 氧化鐵之合成途徑 18
2-2-3-1 水解溶液中的三價鐵鹽 18
2-2-3-2 水合鐵礦在鹼性介質中的轉換 19
2-2-3-3 氧化/水解二價鐵鹽 20
2-2-3-4 型態之轉換 20
2-2-3-5 金屬螯合物之分解 21
2-2-4 氧化鐵合成方法之文獻整理 21
2-2-5 氧化鐵之應用 26
2-3氧化鐵觸媒之覆膜方法 27
2-3-1 觸媒製造的一般方法 27
2-3-2 氧化鐵覆膜方法之文獻整理 29
2-4 氧化鐵/過氧化氫異相催化法之反應機制及應用 34
2-4-1 氧化鐵/過氧化氫異相催化法之反應機制 34
2-4-2 應用於土壤復育的技術上 36
2-4-4 應用於有機廢水的處理 37
2-5 活性碳吸附 38
2-5-1活性碳材質及特性 38
2-5-2 吸附理論 40
2-5-3 吸附平衡方程式 40
2-5-4 溶質、溶劑影響活性碳吸附之因素 42
2-5-5 活性碳的再生方法 44
第三章 實驗設備與方法 45
3-1 實驗藥品與材料 45
3-1-1 覆膜氧化鐵觸媒用藥 45
3-1-2 實驗用藥品 45
3-1-3 液相層析儀(HPLC)分析用藥 45
3-1-4 過氧化氫測定用藥 45
3-1-5總有機碳分析儀用藥 46
3-2 實驗設備與分析方法 46
3-2-1觸媒與過氧化氫異相催化系統試驗-無有機污染物 46
3-2-2觸媒與過氧化氫異相催化系統試驗-有機污染物存在 48
3-2-3 各種水質項目分析方法 49
3-3 觸媒的製備方法 54
3-3-1實驗觸媒的前處理及製備 54
3-4 活性碳吸附實驗 58
3-4-1 吸附動力實驗 58
3-4-2 等溫吸附實驗 58
第四章 結果與討論 59
4-1觸媒特性分析 59
4-1-1 掃瞄式電子顯微鏡和能量散佈分析儀 59
4-1-2比表面積、孔隙大小分佈及觸媒含鐵量 72
4-1-3 傅立葉紅外光譜儀(FT-IR) 75
4-2 無對象污染物狀態下異相催化分解H2O2之探討 78
4-2-1活性碳觸媒與H2O2反應機制之探討 78
4-2-1-1反應機制的釐清 78
4-2-1-2觸媒粒徑的影響 80
4-2-2不同觸媒對H2O2分解效應之探討 82
4-2-2-1石英砂覆膜前後對過氧化氫分解能力之改變 82
4-2-2-2.觸媒經化學前處理對過氧化氫分解能力之改變 85
4-2-2-3覆膜方法的不同對過氧化氫分解能力之改變 88
4-2-2-4綜合比較 91
4-2-3不同過氧化氫濃度對觸媒分解H2O2效應之探討 92
4-2-3-1覆膜石英砂與各類經化學前處理之活性碳的變化 92
4-2-3-2不同覆膜方式的活性碳在不同過氧化氫初始濃度下的變化 95
4.2.4不同觸媒劑量對觸媒分解H2O2效應之探討 98
4-2-4-1覆膜石英砂與各類經化學前處理之活性碳的變化 98
4-2-4-2不同覆膜方式的活性碳在不同觸媒劑量下的變化 101
4-2-5各種觸媒催化分解過氧化氫之動力學 103
4-2-5-1各種觸媒的動力模式推導 103
4-2-5-2動力模式之模擬 108
4-2-5-3速率控制步驟 115
4-2-6不同攪拌速度對觸媒分解H2O2效應之探討 116
4-2-6-1覆膜石英砂與各類經化學前處理之活性碳的變化 116
4-2-6-2不同覆膜方式的活性碳在不同觸媒劑量下的變化 120
4-3不同前處理製程的顆粒型觸媒,在有機污染物存在狀態下之異相催化探討 122
4-3-1不同觸媒對污染物吸附能力之差異 122
4-3-2不同前處理方式的活性碳觸媒在有機污染物存在情況下之催化差異 128
4-3-2-1過氧化氫催化分解部分 129
4-3-2-2有機物催化分解部分 139
4-3-3不同前處理方式的活性碳觸媒在不同過氧化氫濃度下催化效果之差異 146
4-3-4不同前處理方式的活性碳觸媒在不同觸媒劑量下催化效果之差異 154
4-3-5不同覆膜方式的活性碳觸媒在有機污染物存在情況下之催化差異 160
第五章 結論與建議 165
參考文獻 167
附錄一 . 178
參考文獻
1.Ravikumar J.X. and Gurol M.D. (1994) Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand. Environmental Science and Technology 28, 394-400.
2.Kong S.H., Watts R.J. and Choi J.H. (1998) Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37, 1473-1482.
3.Lu M.C., Chen J.N., and Huang H.H. (2002) Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere 46,131-136.
4.黃政賢,“污水工程”,高立圖書有限公司,pp. 426~434。
5.張芳淑、高思懷,“Fenton法之原理與應用”,工業污染防治,第56期,pp. 192-204,1995。
6.Valentine R.L. and Wang H.C.A. (1998) Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide. Journal of Environmental Engineering 124, 31-38.
7.Miller C.M. and Valentine R.L. (1999) Mechanistic studies of surface catalyzed H2O2 decomposition and contaminant degradation in the presence of sand. Water Research 33, 2805-2816.
8.Lucking F., Koser H., Jank M., and Ritter A. (1998) Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Research 32, 2607-2614.
9.Chou S.S. and Huang C.P. (1999) Decomposition of hydrogen peroxide in a catalytic fluidized-bed reactor. Applied Catalysis. A 185(2), 237-245.
10.Chou S.S., Huang C.P. (1999) Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere 38, 2719-2731.
11.Lin S.S. and Gurol M.D. (1998) Catalytic decomposition of hydrogen peroxide of iron oxide: kinetics, mechanism, and implications. Environmental Science and Technology 32, 1417-1423.
12.Huang H.H., Lu M.C., and Chen J.N. (2001) Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Research 35, 2291-2299.
13.Francisco R.R. (1998) Plenary lecture: The role of carbon materials in heterogeneous catalysis. Carbon 36, 159-175.
14.Heisig C., Zhang W., and Oyama T. (1997) Decomposition of ozone using carbon supported metal oxide catalysts. Applied Catalysis. B 14,117-129.
15.Khalil L.B., Girgis B.S., and Tawfik T.A. (2001) Decomposition of H2O2 on activated carbon obtained from olive stones. Journal of Chemical Technology and Biotechnology 76, 1132-1140.
16.Lin S.H. and Lai C.L. (2000) Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds. Water Research 34, 763-772.
17.Lu C. J., and Chen S. J.,“The Effects of the Secondary Carbon Source on the Biodegradation of Chlorinated Phenols in Biofilm Reactors”, Wat. Sci. Tech., Vol.26, No.9-11, pp.2113-2116, 1992.
18.Katayama H.,and Tobita S.,“Biodegradation of Phenol and Monochlorophenols by Yeast Rhodotorula Glutinis”,1992.
19.Lu C. J., and Tsai Y. H.,“The Effect of a Secondary Carbon Source on the Biodegradation of Recalcitrant Compounds”, Wat. Sci. Tech., Vol.28, No.7, pp.97-101, 1993.
20.Lu C. M., Lu C. J., and Chuang M. S.,“Effects of Immobilized Cells on the Biodegradation of Chlorinated Phenols”, Wat. Sci. Tech., Vol.30, No.9, pp.87-90, 1994.
21.黃秋蓉、李季眉、盧至人,“固定化氯酚分解菌處理廢水中含氯酚類有毒物質之研究”,第十八屆廢水處理技術研討會論文集,pp.539-548,1993。
22.陳國樹、袁紹英、張碧芬,“厭氧混合菌分解氯酚化合物之研究”Ann. Rept. NIEA Taiwan R. O. C. 2.,pp.423-430,1994。
23.Basu S. K., Oleszkiewiez J. A., and Sparling R.,“Dechlogenation of 2-chlorophenol in Anaerobic Batch Cultures”, Wat. Res., Vol.30, No.2, pp.315-322, 1996.
24.Suidan M. T., Flora J. R. V., Boyer T. K., Wuellner A. M., and Narayanan B.,“Anaerobic Dechlorination Using a Fluidized Gac Reactor”, Wat. Res., Vol.30, No.1, pp.160-170, 1996.
25.顧洋,“紫外線/臭氧氧化程序在廢水處理上的應用”,工業污染防制,第56期,pp.248-261,1995。
26.謝永旭,“光催處理程序”,工業污染防制,第56期,pp.173-191,1995。
27.黃旭暉,“表面溶解及過氧化氫分解對α-FeOOH/H2O2程序去除2-氯酚效應之探討”,國立交通大學環境工程研究所碩士論文,1998。
28.Tyre B.W., Watts R.J.,and Miller G.C., "Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide " J.Environ.Qual. , vol.20 , pp.832-838 , 1991.
29.Barbeni M., Minero C.,Pelizzetti E., Bergerello E., and Serpone N.,“Chemical Degradation of Chlorophenols with Fenton’s Reagent”, Chemosphere, Vol.16, pp.2225-2237, 1987.
30.呂仁明、顧洋,“以紫外線二氧化鈦程序處理2-氯酚溶液反應行為之研究”,第十八屆廢水處理技術研討會論文集,pp.823-839,1993。
31.黃國書、王國華、謝永旭,“以二氧化鈦進行光催化分解水中單氯酚類之研究”,第十七屆廢水處理技術研討會論文集,pp.807-818,1992。
32.申永順、顧洋、李崑池,“以紫外線過氧化氫程序處理含氯酚類水溶液反應行為之研究”,第十七屆廢水處理技術研討會論文集,pp.553-573,1992。
33.張家源、陳重男,“二相式臭氧反應系統分解氯酚研究”,第十七屆廢水處理技術研討會論文集,pp.749-758,1992。
34.李元陞,“以H2O2/UV製程處理2,4,6-三氯酚的有機廢水的反應速率研究”,第十九屆廢水處理技術研討會論文集,pp.181-184,1994。
35.殷榮堅、顧洋、李崑池,“以紫外線臭氧程序處理2-氯酚溶液反應動力探討”,第十九屆廢水處理技術研討會論文集,pp.441-447,1994。
36.林欣棟,“鐵離子對2-氯酚光催化分解之效應”,國立交通大學環境工程研究所碩士論文,1996。
37.陳世哲,“以水化後針鐵礦催化過氧化氫分解氯酚類化合物之探討”,國立交通大學環境工程研究所碩士論文,1998。
38.Schwertmann U., and Cornell R. M.,“Iron Oxides in the Laboratory”, VCH Publishers, Inc., New York, NY.
39.Santos A., Barrault J., Bouchoule C., Echachoui K., Frini-Srasra N., Trabelsi M., and Bergaya F., “Catalytic Wet Peroxide Oxidation (CWPO) of Phenol over Mixed (Al-Cu)-Pillared Clays”, Environmental Science and Technology, Vol.15, pp.269-274, 1998.
40.Dufour J., Lopez L., Formoso A., Negro C., Latorre R., and Lopez-Mateos F.,“Mathematical Model of Goethite Synthesis by Oxyprecipitation of Stell Pickling Liquors”, The Chemical Engineering Journal, Vol.59, pp.287-291, 1995.
41.Kuma K., Suzuki Y., and Matsunaga K.,“Solubility and Dissolution Rate of Collidalγ-FeOOH in Seawater”, Wat. Res., Vol.27, No.4, pp.651-657, 1993.
42.Nooney M. G., Campbell A., Murrell T. S., Lin X. F., Hossner L. R., Chusuei C. C., and Goodman D. W.,“Nucleation and Growth of Phosphate on Metal Oxide Thin Films”, Langmuir, Vol.14, pp.2750-2755, 1998.
43.Kitajima N., Fukuzumi S., and Ono Y.,“Formation of Superoxide Ion during the Decomposition of Hudrogen Peroxide on Supported Metal Oxides”, J. Phys. Chen., Vol.82, pp.1505-1509, 1978.
44.Weidler G., Degovics G., and Laggner P., “Surface Roughness Created by Acidic Dissolution of Synthetic Goethite Monitored with SAXS and N2-Adsorption Isotherms”, J. of Colloid and Interface Sci, Vol.197, pp.1-8, 1998.
45.Valentine R. L., and Wang H.,“Iron Oxide Surface Catalyzed Oxidation of Quinoline by Hydrogen Peroxide”, J. of Env. Eng., Vol.124, No.1, pp.31-38, 1998.
46.Xue Y., and Traina S. J.,“Oxidation Kinetics of Co(Ⅱ)-EDTA in Aqueous and Semi-Aqueous Goethite Suspensions”, Env. Sci. Tech., Vol.30, No.6, pp.1975-1981, 1996.
47.周珊珊、黃志彬、王瓊淑,“以顆粒化鐵氫氧化物觸媒催化過氧化氫氧化苯甲酸之研究”,第二十二屆廢水處理技術研討會論文集,pp.210-216,1997。
48.吳忠柱,“α-FeOOH覆膜對脫硫渣去除腐植酸之影響”,國立成功大學環境工程所碩士論文,1998。
49.Breeuwsma A., and Lyklema J.,“Physical and Chemical Adsorption of Ions in the Electrical Double Layer on Hematite(α-Fe2O3)”, J. of Colloid and Interface Sci, Vol.43, pp.437-448, 1973.
50.Anderson P. A., and Benjamin M. M.,“Effect of Silicon on the Crystallization and Adsorption Properties of Ferric Oxides”, Env. Sci. Tech., Vol.19, No.11, pp.1048-1052, 1985.
51.Geoffrey M. D., Barry T. H., Mckelvie I. D., and Beckett R, “Adsorption of Natural Organic Matter onto Goethite, Colloids and Surfaces”, Phy. And Eng. Aspects, Vol.89, pp.1-13, 1994.
52.Khan M. A., and Watts R. J.,“Mineral-Catalyzed Peroxidation of Tetrachlorethylene”, Water Air, and Soil Pollution, Vol.88, pp.247-260. 1996.
53.Miller C. M., and Valentine R. L.,“Hydrogen Peroxide Decomposition and Quinoline Degradation in the Preasence of Aquifer Material”, Wat. Res., Vol.29, No.10, pp.2353-2359, 1995.
54.Lin S. S.,“Interaction of H2O2 with Iron Oxide for Oxidation of Organic Compounds in Water”, Ph. D. dissertation, Drexel University, 1997.
55.Fan H. J., Wang, T. C. and Anderson P. R., “Removal Of Cu (Ⅱ)By Iron Oxide-Coated Granular Activated Carbon”,J. of Chinese institute Env. Eng., Vol.10, No.3, pp.193-199, 2000.
56.劉碧卿 and Anderson P. R.,“利用顆粒活性碳處理含非極性有機物之重金屬廢水”,第二十四屆廢水處理技術研討會論文集,pp.613-618,1999。
57.Stahl R. S. and James B. R., “Zinc Sorption by Iron Oxide-Coated Sand as a Function of pH ”, J. of Am. Soil Sci. Soc.,Vol. 55,pp.1287-1290,1991.
58.Bailey R. P., Bennett T. and Benjamin M.M., “Sorption Onto And Recovery Of Cr (Ⅵ) Using Iron Oxide-Coated Sand ”, Wat. Sci. Tech, Vol.26, No.5-6, pp.1239-1244, 1992.
59.Lo S. L. and Chen T. Y.,“Adsorption Of Se(Ⅳ) And Se(Ⅵ) On An Iron-Coated Sand From Water ”, Chemosphere, Vol.35, No.5 , pp.919-930, 1997.
60.賴進興,“氧化鐵覆膜濾砂吸附過濾水中銅離子之研究”,國立台灣大學環境工程所博士論文,1995。
61.吳忠柱,“α-FeOOH覆膜對脫硫渣去除腐植酸之影響”,國立成功大學環境工程所碩士論文,1998。
62.Kitajima, N., Fukuzumi, S. and Ono, Y., "Formation of Superoxide Ion during the Decomposition of Hudrogen Peroxide on Supported Metal Oxides" J.Phys.Chen. , 82 , 1505-1509(1978).
63.Ravikumar J. X.., and Gurol M. D.,“Chemical Oxidation of Chlorinated Organics by Hydrogen Peroxide in the Presence of Sand”, Env. Sci. Tech., Vol.28, pp.394-400, 1994.
64.程惠生、盧啟文、葉昭嚴,“利用Fenton’s Reagent處理受Fluoranthene污染土壤之研究”,第二十屆廢水處理技術研討會論文集,pp.140-148,1995。
65.Watts R. J., Udell M. D., and Rauch P. A.,“Treatment Pentachlorophenol-contaminated Soils Fenton’s Reagent”, Haz. Waste and Haz. Mat., Vol.7, pp.335-345, 1990.
66.Lin S. S., and Gurol M. D.,“Heterogeneous Catalytic Oxidation of Organic Compound by Hydrogen Peroxide”, Wat. Sci. Tech, Vol.34, No.9, pp.57-64, 1996.
67.AWWA, AWWA Standard for Powder Activated Carbons, pp. 600-678, 1978.
68.Gregg, S. J. and Sing, K. S. W., Adsorption, Surface Area and Poro-sity, Academic Press, London, 1982.
69.Bansal, R. C., Donnet, J. and Stoeckli, F., “Manufacture of Activated Carbon”, Active Carbon, Marcel Dekker, Inc., New York, pp. 1-27, 1988.
70.Sonnenberg, L. B., Johnson, J. D. and Christman, R. F., “Chemical Degradation of Humic Substances for Structutal Characterization”, Aquatic Humic Substrance, Suffet, I. H. and MacCarthy, P. Eds., Amer. Chem. Soc., pp. 1-23, 1988.
71.Coughlin, R. W. and Ezra, F. S., “Role of Surface Acidity in the Ad-sorption of Organic Pollutants on the Surface of Carbon”, Environ. Sci. Technol., Vol. 2, No. 4, pp. 291-297, 1968.
72.Snoeylink, V. L. et al., “Active Carbon: Dechlorination and the Ad-sorption of Organic Compounds”, Chemisty of Water Supply, Treat-ment and Distribution, Rubin, A. Eds., Ann Arbor Sci. Pub. Inc., Ann Arbor, Mich, 1974.
73.Puri, B. R., “Carbon Adsorption of pure Compounds and Mixtures from Solution Phsae”, Activated Carbon of Organics from the Aqueous, Vol. I, Suffet, I. H. and McGuire, M. J. Eds., Ann Arbor Sci. Pub. Inc., Ann Arbor, Mich, 1980.
74.Puri, B. R., “Physicochemical Aspects of Carbon Affecting Adsorp-tion from the Aqueous phase”, Treatment of Water by Granular acti-vated Carbon, Suffet, I. H. and McGuire, M. J. Eds., Advances in Che-mistry Series 202. Amer. Chem. Soc., Wishington, D. C., 1983.
75.James. M. Montgomery Consulting Engineers, Inc., Water Treatment Principles and Design, Wiley-Interscience, 1985.
76.Weber, W. J., “Adsorption theory, Concept, and Models”, Adsorption Technology, Heinz Heinemann. Inc., Brekeley, California, 1985.
77.Faust, S. D. and Aly, O. M., Adsorption Processes for Water Treat-ment, Butterworth Publishers, Montvale Avenus, Stoneham, 1978.
78.McCreary, J. J. and Snoeyink, V. L., “Reaction of Free Chlorine with Humic Substances Before and After Adsorption on Activated Carbon”, ES&T, Vol. 15, No. 2, pp. 193-197, 1981.
79.Frick. B. et al., “Predicing Competitive adsorption Effect in Granular Activated Carbon Filter”, Chapter 11 in Activated Carbon Adsorption of Organics, Ann Arbor Sci. Pub. Inc., Ann Arbor, Mich, p. 229, 1980.
80.Chermisinoff P. N.(1978),Carbon adsorption handbook,Ann Arbor Science Publishing Inc.
81.Moshe S. and Yurii I.M.(1999),”Comparison of catalytic process with other regeneration methods of activated carbon”Catalysis Today,53,pp.73-80.
82.賴進興、駱尚廉、“覆膜濾料研發與應用”,第二十六屆廢水處理技術研討會論文集, 2001。
83.Lai, C. H., Lo S. L. and Chiang H. L., “Adsorption/desorption properties of copper ions on the surface of the iron-coated sand using BET and EDAX analyses,” Chemosphere, Vol. 41, 1249-1255 (2000).
84.Lai, C. H., Chen C. Y., Wei B. L. and Lee C. W., “Adsorptive characteristics of cadmium and lead on the goethite-coated sand surface,” J. of Environmental Science and Health, Vol. A36(5), 747-763 (2001).
85.Wallace J.G., “Hydrogen Peroxide in Organic Chemistry”, E.I. du pont de Nemours & Co., Wilmington, Delaware,1975.
86.Castilla C.M., Ferro-Garcia M.A., Joly J.P. (1995) Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11, 4386-4392.
87.Figueiredo J.L., Pereira M.F.R., Freitas M.M.A. (1999) Modification of the surface chemistry of activated carbons. Carbon 37, 1379-1389.
88.Khalil L.B., Girgis B.S., and Tawfik T.A. (2001) Decomposition of H2O2 on activated carbon obtained from olive stones. Journal of Chemical Technology and Biotechnology 76, 1132-1140.
89.Francisco R.R., (1998) Plenary lecture: The role of carbon materials in heterogeneous catalysis. Carbon 36, 159-175.
90.Satterfield C.N. (1981) Mass transfer in heterogeneous catalysis, Robert E. Krieger Publishers, Inc.
91.Lois J.U., Charles H.T., and Radisav D.V. “The effect of surface metal oxides on activated carbon adsorption of phenolics,” Water Research 32, 1841-1851,1998.
92.Radlsav D.V., Makram T.S., and Richard C.B. “Oxidative coupling of phenols on activated carbon : Impact on adsorption equilibrium,” Environ. Sci. Technol. 1993,27,2079-2085.
93.Ho, P. C. “ photooxidation of 2, 4- Dinitrotoluene in Aqueous solution in the presence of Hydrogen Peroxide”, Environ. Sci. Technol., Vol.20, pp.260-267(1986)
94.Noh J.S. and Schwarz J.A. (1989) Estimation of the point of zero charge of simple oxides by mass titration. Journal of Colloid and Interface Science 130, 157-164.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top