(3.239.33.139) 您好!臺灣時間:2021/03/05 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭世輝
研究生(外文):Shih-Huei Cheng
論文名稱:基於模式率定需求之自來水監測站址優選模式
論文名稱(外文):Calibration-based monitoring station siting model for water distribution network
指導教授:高正忠高正忠引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:52
中文關鍵詞:自來水管網監測站設置模式率定參數調校
外文關鍵詞:water distribution networkmonitoring station sitingmodel calibrationparameter estimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
一個經過嚴謹率定且能描述實際狀況的管網模式對於自來水系統的管理、操作、維護、設計甚為重要。而自動監測站之設置若能考量模式率定之需求,選擇較佳的位置設置監測站,將有利於管網模式之率定,本研究因而結合模擬模式、敏感度分析、叢集方法及優選模式發展了一套基於模式率定需求的監測站網選址模式與程序。首先發展一個介面程式,結合GRG2及EPANET2 建立非線性優選模式,以尋求符合監測站實測水頭壓力之最佳粗糙度係數組合。監測站選址乃是基於敏感度分析而訂定,主要以二種方式進行。第一個方式為選擇對已設監測站點影響較小(新站點對既設點敏感度低)的站址,以期新設監測站能擴大監測所代表性涵蓋範圍;第二個方式為選擇在改變水頭壓力之重新率定結果下,令粗糙度修正值較多(新站點對目前率定結果敏感度高)的站址,以選擇能改善目前率定誤差最多的站址。新站點之選擇則採用叢集方法,將空間中之候選節點分成數個叢集,並由所有叢集中選擇一組較佳的站址組合,以滿足涵蓋範圍最大之設置原則,並以新選的組合重複上述步驟進行選址,直到滿足需求或達到站址數限制。本研究以一個假想案例,以分析上述程序之適用性,分別說明敏感度分析結果、站址篩選結果、叢集分區結果、選站結果、率定結果,綜合結果發現,監測站設置考量敏感度分析與叢集分析,可增加率定所涵蓋之範圍,以增進率定優選模式之準確性,達到自來水管網模式率定之目標。

A hydraulic model is important for the design, management, and operation of a water distribution network. The hydraulic model must be well calibrated to approximate the real flow pattern in the network. If monitoring stations are placed at locations that can provide appropriate data, they should be able to facilitate the model calibration. Therefore, this study integrates a simulation model, sensitivity analyses, a clustering approach, and an optimization model to propose a calibration-based monitoring station siting procedure. A computer program is developed to serve as the interface between GRG2 and EPANET2 for establishing a nonlinear optimization model to seek the best roughness set to fit observed head pressures. Two sensitivity-based criteria are applied for siting monitoring stations: (1) low roughness sensitivity after calibration for head pressures at desired locations; and (2) high roughness sensitivity after calibration for a specified head pressure change at a desired location. A clustering method is used to divide candidate locations into a desired number of groups and one is selected from each group to effectively expand the monitoring coverage. Repeat the above procedure until a specified number of locations are selected. A hypothetical case is applied to illustrate the applicability of the proposed procedure. The monitoring network obtained by the procedure can effectively increase the coverage and also the quality of the hydraulic simulation model calibration.

中文摘要…………………………………………………………………………i
英文摘要…………………………………………………………………………ii
誌謝………………………………………………………………………………iii
目錄………………………………………………………………………………iv
圖目錄……………………………………………………………………………vi
表目錄……………………………………………………………………………vii
符號說明…………………………………………………………………………viii
第一章 前言………………………………………………………………(一)-1
1.1 研究緣起………….………………………………………………(一)-1
1.2 研究目的………….………………………………………………(一)-3
1.3 論文內容………………………………………………………… (一)-5
第二章 文獻回顧…………………………………………………………(二)-1
2.1 自來水管網……………………………………………………… (二)-1
2.2 自來水管網模式………………………………………………… (二)-2
2.3 率定優選模式…………………………………………………… (二)-3
2.4 敏感度分析……………………………………………………… (二)-4
第三章 研究方法與流程…………………………………………………(三)-1
3.1 基於模式率定需求之監測站選址程序………………………… (三)-1
3.2 管網模式率定優選模式………..……………………………….. (三)-1
3.2.1 GRG2非線性規劃套裝優選模式………………………….. (三)-3
3.2.2 EPANET2水力模擬模式…………………………………… (三)-4
3.2.3 GRG2與EPANET2整合介面程式………………………….. (三)-7
3.3 敏感度分析程序………………………………………………… (三)-7
3.3.1 參數對監測站水頭壓力不敏感節點選取法………………(三)-8
3.3.2 調整未設點壓力對參數最敏感節點選取法………………(三)-8
3.4 叢集分析……………………………….…………………………(三)-9
第四章 案例研究與討論…………………………………………………(四)-1
4.1 案例基本資料..………………………………………………….. (四)-1
4.2 監測站址優選……....………….…………………………………(四)-3
4.3 選址結果與討論….………………………………………………(四)-5
第五章 結論與建議………………………………………………………(五)-1
5.1 結論……………………………………………………………….(五)-1
5.2 建議……………………………………………………………….(五)-2
參考文獻……………………………………………………………………(參)-1
附錄一 管網基本屬性資料表…………………………………………..(附一)-1
附錄二 介面程式原始碼(C 語言) …………………………………….(附二)-1
圖目錄
圖3.1 基於模式率定需求之監測站選址程序…………………………..(三)-2
圖4.1 案例區管網分布圖………………………………………………..(四)-2
圖4.2 各方案之敏感係數排序結果……………………………………..(四)-10
圖4.3 方案2-2-5之選址結果…………………………………………..(四)-11
圖4.4 方案2-3-4之選址結果…………………………………………..(四)-11
圖4.5 方案2-4之選址結果……………………………………………..(四)-12
圖4.6 方案2-5之選址結果……………………………………………..(四)-12
圖4.7 方案2-2-5之選址結果…………………………………………..(四)-13
圖4.8 方案2-3-4之選址結果…………………………………………..(四)-13
圖4.9 方案2-4之選址結果……………………………………………..(四)-14
圖4.10方案2-5之選址結果…...………………………………………..(四)-14
表目錄
表 4.1 案例區管徑統計表……………………………………………….(四)-2
表 4.2 案例區管長統計表……………………………………………….(四)-2
表 4.3 不敏感節點連接管件…………………………………………….(四)-11
表 4.4 比較選址方案之全區率定結果………………………………….(四)-11
表 4.5 各選址方案對測站率定結果…………………………………….(四)-11

1.朱健行(1999),“大台北區自來水管網分析與適用參數調整之探討”,自來水會刊雜誌,第34期。
2.朱健行(1990),“自來水配水管理系統監控之探討”,自來水會刊雜誌,第34期。
3.王如意,林聰悟等(1991),台北自來水網路模擬模式適用參數之研究,國立台灣大學水工試驗所。
4.葉弘德,李厚達等(1988), “大型自來水管網分析”,自來水會刊雜誌,第28期。
5.Abadie, J. and Carpentier, J. (1969). “Generalization of the wolfe reduced gradient method to the case of nonlinear constraints,” in Optimization, R. Fletcher (ed.), Academic Press, London, 37-47.
6.Box, M. J. (1965). “A new method of constrained optimization and a comparison with other methods,” Computer Journal, 8, 45-52.
7.Bush, C. A., and Uber, J.G. (1998). “Sampling design methods for water distribution model calibration,” J. of Water Resour. Planning and Mgmt., Vol. 124, No. 6, 334-344.
8.Datta, R. S. N., and Sridharan, K. (1994). “Parameter estimation in water distribution systems by least squares,” J. of Water Resour. Planning and Mgmt., Vol.120, No.4, 405-422.
9.Greco, M., and Giudice, G. D. (1999). “New approach to water distribution network calibration,” J. of Hydraulic Eng., Vol. 125, No. 8, 849-854.
10.Jain, A. K., and Dubes, R. C. (1988). Algorithms for clustering data, Prentice Hall, ISBN 0-13-02227-8.
11.Kumar, A., Kansal, M. L., and Arora, G. (1995). “Identification of monitoring stations in water distribution system,” Journal of Environment Engineering, Vol.123, No.8, 746-752
12.Kessler, A., Ostfeld, A., and Sinai, G. (1998). “Detecting accidental contaminations in municipal water networks,” J. of Water Resour. Planning and Mgmt., Vol. 124, No. 4, 192-198.
13.Lansey, K. E., and Basnet, C. (1991). “Parameter estimation for water distribution networks,” J. of Water Resour. Planning and Mgmt., Vol. 117, No. 1, 126-143.
14.Lansey, K. E., El-Shorbagy, W., Ahmed, I., and Haan, C. T. (2001). “Calibration assessment and data collection for water distribution networks,” J. of Hydraulic Eng., Vol. 127, No. 4, 270-279.
15.Lasdon, L. S., and Mantell, J. (1986). GRG2 user’s guide, Dept. of General Business, the University of Texas, Austin, Tex.
16.Lee, B. H., Deininger, R. A., and Clark, R. M. (1991). “Locating monitoring stations in water distribution systems,” Journal AWWA, July, 61-66.
17.Lee, B. H., and Deininger, R. A. (1992). “Optimal Location of Monitoring Stations in Water Distribution System,” Journal of Environment Eng., Vol. 118, No.1, 4-16.
18.Mays, L. W. (1999). Water distribution systems handbook, McGraw-Hill, ISBN 0-07-134213-3.
19.Meier, R. W., and Barkdoll, B. D. (2000). “Sampling design for network model calibration using genetic algorithms,” J. of Water Resour. Planning and Mgmt., Vol. 126, No. 4, 245-250.
20.Ormsbee, L. E., and Wood, D. J. (1989). “Implicit pipe network calibration,” J. Water Resour. Planning and Mgmt., Vol. 115, No. 2, 243-257.
21.Ormsbee, L. E., and Lingireddy, S. (1997). “Calibrationg hydraulic network models,” Journal AWWA, February, 42-50.
22.Reddy, P. V. N., Sridharan, K., and Rao, P. V. (1996). “WLS method for parameter estimation in water distribution networks,” J. of Water Resour. Planning and Mgmt., Vol. 122, No. 3, 157-164.
23.Rossman, L. A. (2000). EPANET2 USERS MANUAL, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, Cincinnati, Ohio, USA.
24.Salgado, R., Todini, E., and O’Connell, P. E. (1988). “Extending the gradient method to include pressure regulating valves in pipe networks,” Proc. Inter. Symposium on Computer Modeling of Water Distribution Systems, University of Kentucky, May, 12-13.
25.Todini, E. and Pilati, S. (1987). “A gradient method for the analysis of pipe networks,” International Conference on computer Applications for Water Supply and Distribution, Leicester Polytechnic, UK, Sep. 8-10.
26.Vrahatis, M. N., Boutsinas, B., Alevizos, P., and Pavlides, G. (2002). “The new k-windows algorithme for improving the k-means clustering algorithm,” Journal of Complexity 18, 375-391.
27.Walski, T. M. (1983). “Technique for calibrating network models,” J. Am. Water Resour. Planning and Mgmt., Vol. 109, No. 4, 360-372.
28.Walski, T. M. (1986). “Case study: pipe network model calibration issues,” J. of Water Resour. Planning and Mgmt., Vol. 112, No. 2, 238-249.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔