跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 06:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張仲佐
研究生(外文):Chang, Chung-Tso
論文名稱:自動PM10貝他監測器準確度之研究
論文名稱(外文):STUDY ON THE ACCURACY OF AUTOMATIC PM10 BETA GAUGE MONITOR
指導教授:蔡春進蔡春進引用關係
指導教授(外文):Tsai, Chuen-Jinn
學位類別:博士
校院名稱:國立交通大學
系所名稱:環境工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:86
中文關鍵詞:濕度貝他監測器PM10高流量採樣器
外文關鍵詞:relative humiditybeta gaugePM10hi-vol sampler
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
在台灣,自動貝他PM10監測器是一種廣泛被應用的即時監測器。由於台灣地區濕度偏高,常造成貝他監測器讀值偏高,因此,對於監測器本身因濕度而造成的讀值偏差問題則更顯得重要。在本文中,我們利用現場採樣與模式模擬的方式分別針對此項問題進行研究。
現場採樣的結果,我們發現當大氣濕度偏低時,貝他PM10監測器讀值與高流量採樣器濃度間的差距非常之小,然而,當大氣濕度增高甚至超過氣膠潮解點的時候,貝他PM10監測器讀值與高流量採樣器濃度間的差距會越來越大。為了要瞭解貝他PM10監測器讀值與高流量採樣器之間濃度差距的原因,我們更發展理論模式來求出貝他監測器濾紙上的微粒在採樣及監測室內含水量蒸發的情形。
模擬的結果顯示,當濕度低於RH = 85 % 時,所有吸附在濾紙微粒上的含水量在採樣或監測室內都會被完全蒸發掉,然而,當濕度高於RH = 85 % 時,部份濾紙微粒上的含水量會將留存而造成貝他PM10監測器讀值大於高流量採樣器濃度值的情況。在模擬日平均貝他監測器讀值時,我們發現,模擬值與實際貝他監測器讀值是非常接近的。
此外,為了瞭解濕度效應在貝他監測器讀值上的影響,我們將兩部貝他PM10監測器同時進行監測,其中,1號監測器以衝擊瓶加濕入口處的空氣,2號監測器則以平常濕度分別進行監測。結果數據顯示,當濕度高於RH = 80 %時,1號貝他PM10監測器的讀值則開始明顯高於2號監測器的讀值。另外,實驗顯示,1號貝他PM10監測器(RH較高)的壓降增加量較2號貝他PM10監測器(RH較低)的壓降增加量低,其中可能原因為粉塵餅內含水量的蒸發,造成粉塵餅的空孔而使得壓降增加量降低。

Automatic Wedding beta-gauge PM10 monitors are widely used in Taiwan. Due to the frequent occurrence of high relative humidity in Taiwan, which may increase the PM10 readings of the beta-gauge. Thus, it is of critical importance to study the humidity effect on the accuracy of the monitor. In this thesis, both field study and theoretical modeling were conducted.
In the field study, the PM10 concentrations detected by the Wedding beta-gauge PM10 monitor and those measured by the manual hi-vol PM10 sampler were found to be quite close when the ambient relative humidity (RH) was lower than the deliquescence RH (DRH) of aerosols. However, when the deliquescent point was exceeded, PM10 concentrations of the beta-gauge were found to be higher and differences increases with increasing ambient RH. In addition, theoretical water mass calculated based on a thermodynamic model (ISORROPIA model (Nenes et al., 1998)) was found to be much higher than the actual values. To understand the differences in PM10 concentrations between the beta-gauge monitor and hi-vol sampler, models were developed to determine water evaporation loss from collected particles on the filter tape of the beta-gauge during sampling and in the monitoring room.
Simulated results show that all absorbed water evaporates completely at RH lower than about 85 %. However, absorbed water does not evaporate completely at RH higher than about 85 %, and remaining water in particles accounts for higher beta-gauge readings than the hi-vol concentrations. The simulated daily beta-gauge PM10 concentrations are close to the actual beta-gauge readings obtained previously.
Further study of the influence of relative humidity on the readings of the beta-gauge PM10 monitor was conducted using two collocated beta-gauge monitors, in which monitor #1 was conditioned with water vapor at the inlet while monitor #2 was not. Experimental data showed that PM10 readings of these two monitors were nearly identical when the relative humidity at the inlet of monitor #1 was less than about 80 %, although its relative humidity was higher than that of monitor #2. Higher PM10 readings were observed in monitor #1 when the relative humidity was over 80 %. The present models were found to fit the experimental data very well, and the thermodynamic model again overestimated the effect of relative humidity on the beta-gauge readings.

CONTENTS
Abstract (Chinese) I
Abstract (English) III
Acknowledgements VI
Contents VII
Tables VIII
Figures IX
Nomenclature XII
Chapter 1 Introduction 1
1.1 Literature review 3
1.2 Objectives of this study 5
Chapter 2 Experimental methods 7
2.1 Sampling at field 7
2.2 RH-controlled experiment 11
Chapter 3 Theoretical models 13
3.1 Water evaporation during sampling 13
3.2 Water evaporation in the monitoring room 15
Chapter 4 Results and discussions 18
4.1 Results of the field study 18
4.2 Simulated results of water evaporation 20
4.3 Simulated results and actual beta-gauge readings 22
4.4 Results of RH-controlled experiment 25
Chapter 5 Conclusions 29
References 31

1. Appel, B. R. and Tokiwa, Y., 1981. Atmospheric particulate nitrate sampling errors due to reactions with particulate and gaseous strong acids. Atmospheric Environment 15, 1087-1089.
2. Chang, C. T., Tsai, C. J., Lee, C. T., Chang, S. Y., Cheng, M. T., Chein, H. M., 2001. Differences in PM10 concentrations measured by beta-gauge monitor and hi-vol sampler. Atmospheric Environment 35, 5741-5748.
3. Cheng, Y. H. and Tsai, C. J., 1997. Evaporation loss of ammonium nitrate particles during filter sampling. Journal of Aerosol Science 28, 8, 1553-1567.
4. Danckwerts, P. V., 1953. Continuous flow systems: distribution of residence times. Chemical Engineering Science 2, 1-13.
5. Gupta, A., Novick, V. J., Biswas, P. and Monson, P. R., 1993. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters. Aerosol Science and Technology 19, 94-107.
6. John, W. and Wang, H. C., 1991. Laboratory testing method for samplers-lowered effectiveness from particle loading. Aerosol Science and Technology 14, 93-101.
7. John, W.; Winklmayr, W. and Wang, H. C., 1991. Particle deagglomeration and reentrainment in a PM10 sampler. Aerosol Science and Technology 14, 165-176.
8. McFarland, A. R. and Ortiz, C. A., 1987. Aerosol sampling characteristics of the Sierra-Anderson model 1200 PM10 inlet. Aerosol Technology Laboratory Report No. 4716/01/08/81/ARM, Texaz A&M University, College Station, TX, 15-19.
9. Nenes, A., Pandis, S. N., Pilinis, C., 1998. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry 4, 123-152.
10. Poling, B. E., Prausnitz, J. M. and O’Connell, J. P., 2001. The properties of gases and liquids, pp. 11.5-11.6. Mcgraw-Hill, New York.
11. Ranade, M. B.; Woods, M. C.; Chen, F. L.; Purdue, L. J. and Rehme, K. A., 1990. Wind tunnel evaluation of samplers. Aerosol Science and Technology 13, 54-71.
12. Tsai, C. J., 1995. A field study of three collocated ambient PM10 samplers. Part. Part. Syst. Charact., 12, 10-15.
13. Tsai, C. J. and Cheng, Y. H., 1996. Comparison of two ambient beta-gauge PM10 samplers. Journal of the Air & Waste Management Association 46, 142-147.
14. U. S. EPA, 1987. Revisions to the national ambient air quality standards for particulate matter, 40 CFR Part 50, Federal Register 52:24634, July 1.
15. Wedding, J. B. and Weigand, M. A., 1989. Wedding & associates PM10 or TSP beta gauge automated particle sampler operations and maintenance manual. Wedding & associates, INC., Fort Collins, Colorado 80522, USA.
16. Wedding, J. B. and Weigand, M. A., 1993. An automatic particle sampler with beta gauging. Journal of the Air & Waste Management Association 43, 475-479.
17. Zhang, X. and McMurry, P. H., 1987. Theoretical analysis of evaporative losses from impactor and filter deposits. Atmospheric Environment 21, 1779-1789.
18. Zhang, X. and McMurry, P. H., 1992. Evaporative losses of fine particulate nitrates during sampling. Atmospheric Environment 26A, 3305-3315.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 單文經(民86)。同儕個別學習輔導的要領。學生輔導雙月刊,52,25-34。
2. 郭昭佑(民84)。教學視導-行政視導無法顧及的層面。研習資訊,13(1),25-29。
3. 林素卿(民88)。行動研究與教育實習。教育實習輔導,5(1),25-30。
4. 單文經(民87)。鷹架支持的譬喻在大班教學上的應用。視聽教育雙月刊,39(6),1-22。
5. 黃進興、陳中庸(民85)。教學視導之探討。儒林學報,12,66-74。
6. 張清濱(民85)。教學視導的模式與應用。研習資訊,13(1),5-13。
7. 張菀珍(民86)。鷹架理論在成人教學實務之應用。成人教育,40,43-52。
8. 張德銳(民87a)。以教師同儕合作化解教學專業的危機。教師天地,93,12-16。
9. 張德銳(民88a)。現代教師在學習型學校應扮演的角色。教育資料與研究,27,13-16。
10. 楊振昇(民88)。我國教學視導制度之困境與因應。課程與教學季刊,2(2) ,15-30。
11. 歐用生(民82)。落實課程和教學視導。研習資訊,10(6),1-6。
12. 歐用生(民83a)。提昇教師行動研究的能力。研習資訊,11(2),1-6。
13. 歐用生(民83b)。做一個有反省能力的教師。研習資訊,11(5),1-6。
14. 歐用生(民88)。行動研究與學校教學革新。國民教育,39(5),2-12。
15. 歐用生(民89)。教師是轉型的知識份子-聲音的「政策」與「教學」。國民教育,41(2),1-6。