跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴哲宏
研究生(外文):Che-Hung Lai
論文名稱:DSP全數位控制可程式電源供應器之研製
論文名稱(外文):Design and Implementation of a DSP-Based Fully Digital-Controlled Programmable Power Supply
指導教授:鄒應嶼鄒應嶼引用關係
指導教授(外文):Ying-Yu Tzou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:96
中文關鍵詞:UPSDSP
外文關鍵詞:UPSDSP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:835
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本論文研製一以單晶片數位訊號處理器(DSP)為基礎之全數位控制可程式電源供應器。功率級主要分為兩部分,前級為一昇壓型功率因數修正電路,後級為一單相全橋式換流器架構。傳統功率因數修正電路之輸出電壓為一固定值,但在某些特殊運用中仍須具有可變輸出電壓之功率因數修正電路,本論文之前級即為研製可變輸出電壓且具有功率因數修正之電路;首先說明功率因數及修正控制原理,比較不同功率因數修正電路效率、成本、複雜度等電路特性規格後,選定一雙開關升降壓電路作為主要研究之對象,利用多迴路控制器以達到高頻寬、輸出可變之系統規格。電路後級為全橋式單相脈寬調變換流器,首先針對換流器等效電路模型作一詳盡之推導,提出濾波器值設計方法,並針對換流器之開路特性作一分析,最後提出多迴路控制器及控制器參數設計法則,藉由系統化設計流程使電源供應器具有範圍寬廣之直流及交流可變輸出。本文以PSIM模擬軟體進行所提出多迴路控制架構及其對應參數之電腦模擬驗證,並以單晶片DSP(TMS320F240)控制板實現所提出之控制法則,配合一升降壓型功率因數修正電路及單相全橋式脈寬調變換流器完成系統整體測試。模擬和實驗結果均一致顯示本文所提出控制方法的效果及優越性,理論分析亦得到驗證,而達到所預期之設計規格。

This thesis presents the design and implementation of a DSP-based fully digital-controlled programmable power supply. The power stage includes two main parts. The front stage is a boost converter with power factor correction (PFC) circuit. The back stage is a single-phase full-bridge PWM inverter. The conventional power factor correction circuit has a fixed output voltage. However, in some special applications, a PFC circuit with a changeable output voltage range is needed. First, explanation of power factor correction and control methods are mentioned. After a comparison of several power stage candidates in terms of efficiency, cost, and complexity, the buck-boost converter is chosen to be implemented. In order to achieve wide bandwidth and variable output system spec., multi-loop controllers are adopted. The output stage is a single-phase full-bridge PWM inverter. The equivalent circuit model and the design of output filter are mentioned. The design philosophy of the multi-loop controllers and respective parameters are also be mentioned. The proposed control scheme has been verified by using computer simulation with PSIM and implemented using single-chip DSP (TMS320F240) control card. Experimental verification has been carried out on Buck-Boost and inverter circuits. Simulation and experimental results both show the feasibility and superiority of the proposed multi-loop control methods.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表列 vi
圖列 vii
第一章 緒論 1
1.1 研究背景與發展概況 1
1.2 研究動機與目的 3
1.3 研究方法與系統描述 4
1.4 論文內容概述 5
第二章 可變輸出功率因數修正器之分析與設計 7
2.1 功率因數定義 7
2.2 功率因數修正電路 10
2.2.1 功率因數修正原理 10
2.2.2 昇壓型功因修正電路分析 13
2.2.3 昇降壓型功因修正電路分析 18
2.3 多迴路控制器設計 25
2.3.1 昇壓型功因修正電路 25
2.3.2 昇降壓型功因修正電路 29
第三章 換流器系統架構、特性分析及控制器設計 32
3.1 換流器系統架構 33
3.2 換流器開路特性分析 33
3.2.1 輸出濾波器等效電路推導 33
3.2.2 頻率響應 38
3.2.3 全橋式脈寬調變策略分析與比較 39
3.2.4 輸出濾波器L、C值設計方法 41
3.3 多迴路控制器設計 42
3.3.1 受控體數位化模型 42
3.3.2 閉迴路系統控制架構 43
3.3.3 數位式電流迴路控制器設計 46
3.3.4 電流迴路非理想特性分析 52
3.3.5 數位式電壓迴路控制器設計 57
第四章 可程式電源供應器控制器及軟硬體實現 59
4.1 硬體架構說明 59
4.1.1 以WINDSP為基礎之實驗系統 59
4.1.2 功率級電路 63
4.1.3 控制系統架構說明 67
4.2 軟體實現 69
4.2.1 以定點DSP實現整數運算 69
4.2.2 類比/數位轉換解析度之分析與選擇 71
4.2.3 數位控制器運算架構之建立 73
4.2.4 軟體程式規劃及流程圖 73
4.2.5 軟體程式執行時間 81
第五章 系統模擬及實驗結果 82
5.1 以PSIM為基礎之模擬系統 82
5.2 模擬與實測結果 84
第六章 結論 96
參考文獻 R-1
附錄A 單迴路控制功率因數與α關係 A-1

[1] P. C. Sen, ”Electric motor drives and control-past, present and future,” IEEE Trans. on IND. Appil., vol. 37, no. 6, pp. 562-574, Nov./Dec. 1990.
[2] L. Gyugyi, “Reactive power regeneration and control by thyristor circuits,” IEEE Trans. on IND. Appli., vol. 15, no. 5, pp. 521-532, Sep./Oct. 1979.
[3] A. E. Hammand and M. E. Sadek, “Application of thyristor controlled Var compensator for damping subsynchronous oscillation in power system,” IEEE Trans. on Power Appli. System, vol. 103, no. 1, pp. 198-206, Feb. 1984.
[4] M. Carpia, M. Mazzucchelli, S. Savio, and G. Sciutto, “A new PWM control system for UPS using hysteresis comparator,” IEEE INTELLEC, pp. 749-754, 1987.
[5] A. Kawamura and R. G. Holf, “Instantaneous feedback controlled PWM inverter with adaptive hysteresis,” Trans. on Industrial Applications, vol.20, July/Aug. 1984.
[6] A. Tripathi and P. C. Sen, “Comperative analysis of fixed and sinusoidal band hysteresis current controllers for voltage source inverters,” IEEE Trans. on Ind. Electron., vol. 39, no. 1, pp. 63-73, Feb. 1992.
[7] A. Emani-Naeini and G. F. Franklin, “Deadbeat control and tracking of discrete-time system,” IEEE Trans. on Auto. Control, vol. 27, pp. 176-181, 1982.
[8] K. P. Gokhale, A. Kawamura, and R. G. Holf, “Deadbeat microprocessor control of PWM inverter for sinusoidal output waveform synthesis,” IEEE PESC Conf. Rec., pp. 28-36, 1985.
[9] T. Kawabata, T. Miyashita, and Y. Yamamoto, “Deadbeat control of three phase PWM inverter,” IEEE PESC Conf. Rec., pp. 473-481, 1987.
[10] C. C. Hua, “Two-level switching pattern deadbeat DSP controlled PWM inverter,” IEEE Trans. on Power Electronics, vol. 10, no. 3, pp. 310-317, May 1995.
[11] Kernick, A. D. L. Stechschulte, and D. W. Shireman, “Static inverter with synchronous output waveform synthesized by time-optimal response feedback,” IEEE Trans. on Ind. Electron. Contr. Instrum, vol. 24, no. 4, pp. 197-305, 1977.
[12] S. L. Jung, H. L. Ho, H. C. Yen, and Y. Y. Tzou, “DSP-based digital control of a PWM inverter for sine wave tracking by optimal state feedback technique,” IEEE PESC Conf. Rec., pp. 546-551, 1994.
[13] U. Itkis, Control systems of Variable Structure. John Wiley & Sons, 1976.
[14] V. I. Utkin, Sliding Mode and Their Application in Variable Structure Systems. Mir Publishers, 1978.
[15] F. Oudjema, et al., “VSS approach to a full bridge buck converter used for AC sine voltage generation,” IEEE IECON Conf. Rec., pp. 82-88, 1989.
[16] P. Orondi, L. Nagy, and C. Nemeth, “Control of a three-phase UPS inverter with unbalanced and nonlinear load,” European Power Electronics Conf. Rec., pp. 180-184, 1991.
[17] S. L. Jung and Y. Y. Tzou, “Discrete feedforward sliding mode control of a PWM inverter for sinusoidal waveform synthesis,” IEEE PESC Conf. Rec., pp. 552-559, 1994.
[18] Y. Y. Tzou and R. S. Ou, “DSP-based feedforward fuzzy control of a PWM inverter for AC voltage regulation,” Journal of Control System and Technologym vol. 2, no. 4, pp. 231-238, October 1994.
[19] B. R. Lin and R. G. Holf, “Power electronics converter control based on neural network and fuzzy logic methods,” IEEE PESC Conf. Rec., Seattle, pp. 900-906, 1993.
[20] S. Hara, T. Omata, and M. Nakano, “Synthesis of repetitive control systems and its application,” 24th CDC Conf. Rec., 1985.
[21] R. S. Ou and Y. Y. Tzou, “Design and implementation of a DSP-based programmable AC power source with low harmonic distortion using repetitive control theory,” 15th Conf. of Power Engineering, Tainan, Taiwan, pp. 139-145, Dec. 15-16, 1994.
[22] M. F. Schlecht, “Time-varying feedback gains for power circuits with active waveshaping,” IEEE PESC Conf. Rec., pp. 52-59, 1981.
[23] S. C. Yen and Y. Y. Tzou, “Adaptive repetitive control of a PWM inverter for AC voltage regulation with low harmonic distortion,” IEEE PESC Conf. Rec., pp. 157-163, June, 1995.
[24] B. Wilkenson, “Power factor correction and IEC 555-2,” PowerTechnics Magazine, pp. 20-24, February 1991.
[25] C. K. Duffey and R. P. Stratford, “Update of harmonic standard IEEE-519: IEEE recommended practices and requirements for harmonic control in electric power systems,” IEEE Trans. on Ind. Appli., vol. 25, no. 6, pp. 1025-1034, Nov./Dec. 1989.
[26] T. C. Green, “The impact of EMC regulations on main-connected power converters,” IEE Power Eng. J., vol. 8, no. 1, pp. 35-43, Feb. 1994.
[27] C. T. Pan and T. C. Chen, “Modeling and design of an AC to DC converter,” IEEE Trans. on Power Electron., vol. 8, pp. 501-508, Oct. 1993.
[28] S. Manias, “Novel full bridge semicontrolled switch mode rectifier,” Proc. Inst. Elect. Eng., vol. 138, pt. B, no. 5, pp. 252-256, Sept. 1991.
[29] M. Kazerani, P. D. Zikogas, and G. Joos, ”A novel active current waveshaping technique for solid-state input power factor conditioners,” IEEE Trans. on Ind. Electron., vol. 38, pp. 72-78, Feb. 1991.
[30] J. B. Williams, “Design of feedback loops in unity power factor AC/DC converters,” PESC, pp. 959-967, 1989.
[31] Alexsandar M. Stankovic et. al., “Fast controllers for high-power factor AC-DC converters,” EPE France, pp. 1316-1319, 1991.
[32] Eissa M. O, et. al., ”A fast analog controller for a unity-power-factor AC/DC converter,” APEC, pp. 551-555, 1994.
[33] Simon Wall, Robin Jackson, “Fast controller design for practical power-factor correction systems,” IECON, pp. 1027-1032, 1993.
[34] K. Mahabir et.al., “Linear Averaged and sampled data models for large signal control of high power factor AC-DC converters,” PESC, pp. 291-299, 1990.
[35] L. H. Dixon, “High power factor preregulators for offline power supplies,” Unitrode Seminar Proceedings, pp.1-16, Sec.12, 1990.
[36] J. Rajagopalan, et.al., “High performance control of single-phase power factor correction circuits using a discrete time domain control method,” IEEE, pp. 647-653, 1995.
[37] V. F. Pires and J. F. A. Silva, “Single-stage three-phase buck-boost type AC-DC converter with high power factor,” IEEE Transactions on Power Electronics, vol. 16, Issue: 6, pp. 784 —793, Nov. 2001.
[38] S. Sivakumar, K. Nataraian, and R. Gudelewicz, “Control of power factor correcting boost converter without instantaneous measurement of input current,” IEEE Trans. on Power Electron., vol. 10, no. 4, July 1995.
[39] S. R. Wall and R. D. Jackson, “Large signal models and control design for high power-factor preconditioners,” Conf. Rec. European Power Electronics Conf., vol. 4, pp. 128-133, 1993.
[40] S. Wall and R. Jackson, “Fast controller design for practical power-factor correction systems,” IECON Conf. Proc., pp. 959-967, 1993.
[41] A. M. Stankovic et. al., “Fast controllers for high-power factor AC-DC converters,” EPE France, pp. 1316-1319. 1991.
[42] M. O. Eissa, et. al., ”A fast analog controller for a unity-power-factor AC/DC converter,” APEC, pp. 551-555, 1994.
[43] S. Wall, and R. Jackson, “Fast controller design for practical power-factor correction systems,” IECON, pp. 1027-1032, 1993.
[44] K. J. Astrom and H. Steingrimssoni, “Implementation of a PID controller on a DSP,” Digital control applications with the TMS320 family : selected application notes, Texas Instruments, 1991.
[45] N. M. Abdel-Rahim and J. E. Quaicoe, “Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverter,” IEEE Trans. on Power Electronics, vol. 11, no. 4, pp. 532-541, July 1996.
[46] J. L. Lin, “A new approach of dead-time compensation for PWM voltage inverter,” IEEE Trans. on Circuit and System, vol. 49, No. 4, pp.476-483, Apr. 2002
[47] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic system, Addison-Wesley Publishing Company, Inc., 1990.
[48] 江晉毅、鄒應嶼,「DMCK-240控制器使用手冊」,電力電子實驗室,1998年.
[49] PSIM ver 4.1 User Manual. Powersim technology, Inc., 1996.
[50] TMS320C240 User’s Guide, Texas Instruments, 1997.
[51] WinDSP User’s Manual, Soft Power technology, Inc., 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top