跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 20:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:田如雯
研究生(外文):Ju-Wen Tien
論文名稱:應用QFT於變動參數系統之PID控制器設計
論文名稱(外文):PID Controller Design for Parametric Uncertain Systems Using QFT
指導教授:鄧清政
指導教授(外文):Ching-Cheng Teng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:65
中文關鍵詞:量化回授理論PID控制器次序最佳化
外文關鍵詞:QFTPID ControllerOrdinal Optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現實世界中,任何系統都含有不確定因素,無論是外在環境改變,或人為操作過程產生誤差,或系統本身(元件,材質)等因素,皆會使系統產生變化,因此現實受控系統並不如我們所學習之典型控制中所描述之固定參數系統。本論文應用量化回授理論(QFT)之設計方法在尼可圖上(Nichols chart),繪出“一片”符合開迴路邊界之開迴路轉移函數曲線,每一條曲線軌跡即代表一個PID控制器,並利用次序最佳化(Ordinal Optimization)理論,以盲目選擇法(Blind Pick),選出一相位邊限(phase margin)或增益邊限(gain margin)最小之PID控制器,使變動參數之受控系統經由此PID控制器控制後,系統輸出響應能符合規格之要求。

In practical world, there are uncertainties in any control system. These uncertainties occur due to models themselves or the environment which the equipments are exposed to changes. So, we can not view the plants as fixed parameter plants which we learned in classical control system.
In this thesis, the Quantitative Feedback Theory (QFT) design methods are used to draw a band of open-loop transfer function curves which satisfy the open-loop specification bounds on Nichols chart. Each curve represents a PID controller. Then we utilize the Blind Pick (BP) in Ordinal Optimization theory to pick the worst PID controller among the PID controllers which we had drawn.” Worst” here means the gain margin (GM) or the phase margin (PM) of the designed system is the smallest one. Though the PID controller we had chosen, the output response of the parametric uncertain system meets whether the time domain specifications or the frequency domain specifications.

中文摘要 ………………………………………i
英文摘要 ………………………………………ii
誌謝 ……………………………………………iii
目錄 ……………………………………………iv
圖目錄 …………………………………………viii
表目錄 …………………………………………x
第一章 緒論 ………………………………………1
1-1 研究背景及動機 …………………………… 1
1-2 論文架構 ………………..……………………2
第二章 量化回授理論(QFT) ..…………………3
2-1 二維自由度回授控制系統 …………………………….……………. 3
2-2 受控體之不確定性 ……………………………………….…………. 6
2-2-1 參數未確定性 …………………………………………….….. 6
2-2-2 非參數未確定性 ……………………………………………... 7
2-2-3 參數未確定及非參數未確定之混合 ………………...……… 7
2-3 系統性能規格 ……………………………………………………….. 8
2-3-1 系統追蹤規格 …………………………………………...…… 8
2-3-2 受控體輸出端干擾抑制之規格 …………………..…….…… 8
2-3-3 靈敏度規格 ……………………………………….………...… 9
2-4量化回授理論之設計步驟 ………………………………….…………9
2-4-1建立受控體之樣板 …………………………………………….10
2-4-2規格轉換 ……………………………………………………… 12
2-4-2-1 追蹤模式之上界 .………………………….………… 12
2-4-2-2 追蹤模式之下界規格 ………………………………… 13
2-4-3 迴路邊界設計 …………………………….………..………… 14
2-4-4 迴路設計 ……………………………….…………………..… 17
2-4-5 前置濾波器的設計 …………………………………..…….… 18
第三章 PID控制器探討 ………………………………………..………….. 21
3-1 理想型式之PID控制器 ………………………………….…………. 21
3-1-1 比例控制器 ……………………………………… 22
3-1-2 積分控制器 …………………………… 23
3-1-3 微分控制器 ………………………………23
3-2 工業界所使用之PID控制器 …………………… 23
3-2-1 理想型 (ideal form) …………… 24
3-2-2 串聯型 (series form) …………… 25
3-2-3 並聯型 (parallel form) ……………… 25
3-3 不同型式控制器間參數之轉接 …………………26
3-3-1 理想型 (ideal form) ………………………27
3-3-2 串聯型 (series form) ……………………27
3-3-3 並聯型 (parallel form) ………………… 28
第四章 二階變動區間參數系統之PID控制器設計 …… 30
4-1 二階變動區間參數系統 …………………………30
4-2 PID控制器設計流程 ……………………………30
4-2-1 PID控制的設計 …………………………………31
4-2-2 次序最佳化 ……………………………………35
4-2-3 變動參數之相位/增益邊限計算 ………………36
第五章 模擬與分析 …………………………………… 38
5-1 範例一 …………………………….…………………38
5-1-1 問題描述 ………………….………………………38
5-1-2 設計步驟 ………………………………………..… 39
5-1-3 結果分析 ……………………………………………47
5-2 範例二 …………………………………………………50
5-2-1 問題描述 …………………………………………… 50
5-2-2 設計步驟 …………………………………………… 51
5-2-3 結果分析………………………………………………59
第六章 結論 ……62
參考文獻 …………………… 63

[1] Horowitz, I. M., Synthesis of Feedback Systems, Academic Press, New York, 1963.
[2] Horowitz, I. M. and Sidi, M., “Synthesis of feedback systems with large plant ignorance for prescribed time-domain tolerances”, Int. J. Control, 16, No.2, pp. 287-309, 1972.
[3] Horowitz, I. M., “Quantitative feedback theory”, IEE Proceedings-D, 129, pp. 215-226, 1982.
[4] Horowitz, I. M., “Survey of quantitative feedback theory”, Int. J. Control, 53, No.2, pp. 255-291, 1991.
[5] Horowitz, I. M., Quantitative Feedback Design Theory, Vol1, QFT Publication, 1992.
[6] Wang, B. C., Synthesis of Multiple Loops Control System, Hsin Jyh Book Co., 1994.
[7] Bryant, G. F. and Halikias, G. D., “Optimal loop-shaping for systems with large parameter uncertainty via linear programming”, Int. J. Control, 62, No.3, pp. 557-568, 1995.
[8] Web page of QFT HomePage, http://www.tealeaf.demon.co.uk/introQFT.html, 2002.
[9] Houpis, C. H., Sating, R. R., Raxmussen, S., and Sheldon, S., “Quantitative feedback theory technique and applications”, Int. J. Control, 59, No. 1, pp. 39-70, 1994.
[10] Craig, B., Yossi, C., and Oded, Y., The QFT Frequency Domain Control Design Toolbox-For Use with MATLAB, Terasoft, Inc., 2001.
[11] Niksefat, N. and Sepehri, N., “Designing robust force control of hydraulic actuators despite system and environmental uncertainties”, IEEE Control Systems Magazine, Vol. 21, No. 2, pp.66-77, 2001.
[12] Taha, E. Z., Happawana, G. S., and Hurmuzlu, Y., “Quantitative feedback theory (QFT) for chattering reduction and improved tracking in sliding mode control”, Proc. of American Control Conference, Vol. 6, pp.5004-5008, 2001.
[13] Wu, Z. Y., Schofield, N., Bingham, C. M., Howe, D., and Stone, D. A., “Design of robust current tracking control for active power filters”, IEEE Int. Electric Machines and Drives Conference, pp. 948-953, 2001.
[14] Yoonsu Nam, “QFT force loop design for the aerodynamic load simulator”, IEEE Trans. on Aerospace and Electronic Systems, Vol. 37, No. 4, pp.1384-1392, 2001.
[15] Kuo, B. C., Automatic Control Systems, Seventh Edition, Prentice Hall, New Jersey, 1995.
[16] Isaksson, A. J. and Graebe S. F., “Derivate filter is an integral part of PID design” IEE Proc.-Control Theory Appl., Vol. 149, No. 1, pp. 41-45, 2002.
[17] Website of Review of Basic Concepts, http://www.bgu.ac.il/chem_eng/pages/Courses/oren%20courses/appA_corrected.pdf, 2002.
[18] Wang, Q. -G., Hang, C. C., Yang, Y., and He, J. B., “Quantitative robust stability analysis and PID controller design”, IEE Proc.-Control Theory Appl., Vol. 149, No. 1, pp. 5004-5009, 2002.
[19] Ho, Y. C., Cassandras C. G., Chen C. H., and Dai L., “Ordinal optimization and simulation”, Journal of the Operational Research Society, Vol. 51, pp. 490-500, 2000.
[20] Ho, Y. C., Sreenivas R. S., and Vakili P., “Ordinal optimization in DEDS”, Journal of Discrete Event Dynamics Systems, 2, pp. 61-68, 1992.
[21] Lau, T. W. E. and Ho, Y. C., “Universal alignment probabilities and subset selection for ordinal optimization”, Journal of Optimization Theory and Applications, vol. 93, pp. 455 — 490, 1997.
[22] Lee, L. H., Lau, T. W. E., and Ho, Y. C., “Explanation of goal softening in ordinal Optimization”, IEEE Transactions on Automatic Control, vol. 44, pp. 94-98, 1999.
[23] Web page of DEDS group in Harvard, http://hrl.harvard.edu/people/faculty/ho/DEDS/, 2002.
[24] 李義雄, 應用模糊類神經網路於穩健比例積分控制器設計, 國立交通大學電機與控制工程學系碩士論文, 2001.
[25] 蕭夙君, 應用QFT設計Smith Predictor, 國立中正大學化學工程研究所碩士論文,2000.
[26] 陳鴻泰, 量化回饋理論在強健控制上之應用, 國立成功大學工程科學系碩士論文,1993.
[27] 高國峰, 光碟機聚焦、循軌及MP3解碼控制器之設計, 國立台北科技大學自動化科技研究所碩士論文,2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top