跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯世豪
研究生(外文):Shi-Hao Ker
論文名稱:非線性不確定系統之即時智慧型適應性控制
論文名稱(外文):On-Line Intelligent Adaptive Control for Uncertain Nonlinear Systems using Optimally Trained TS-Type Fuzzy Models
指導教授:李祖添李祖添引用關係
指導教授(外文):Tsu-Tian Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:55
中文關鍵詞:適應性控制智慧型控制即時學習最佳學習TS形式神經網路
外文關鍵詞:indirect adaptive controlintelligent controlTS type fuzzy modelonline-trainingoptimal training
相關次數:
  • 被引用被引用:2
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:119
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一種非線性不確定系統之即時智慧型非直接適應性控制理論。此理論最主要的功能是利用Takagi-Sugeno (TS)模糊類神經網路,即時將非線性系統線性化。再依據所學得的線性化系統來設計控制器,以達到使非線性系統穩定追蹤的目的。在TS模糊類神經網路之學習上,我們採用[13]所提出之兩層類神經網路最佳學習法,將此法應用在TS模糊類神經網路的學習上。因此我們不但可以保證TS模糊類神經網路學習的收斂性,而且也可以保證其收斂速率是最快的。除此之外,我們為了使TS模糊類神經網路收斂的更有效率,本論文採用最小誤差法(least squared method)[1]來估測TS模糊類神經網路之初始權重參數。此法所得之初始權重參數,可使TS模糊類神經網路收斂致全域最小點(global minimum)。在控制器設計方面,我們採用狀態回授追蹤控制的架構,再依據所學得的線性模型來設計控制器的參數,使非線性系統作穩定追蹤。本論文以質量-彈簧-阻尼器( Mass-Spring-Damper)、倒單擺(Inverted Pendulum)和混沌電路(Chua’s Chaotic Circuit)來作範例來驗證所提出之控制器之可行性及實用性。

A new approach for on-line intelligent indirect adaptive control of uncertain nonlinear systems is explored in this thesis using optimally trained Takagi-Sugeno (TS)-type fuzzy models. It is a common practice to assume that the uncertain nonlinear system can possess a linearized TS-type fuzzy model at any time instant. The linearized TS-type fuzzy model should be different at different time instants. The dynamical optimal learning rule can be adopted to update the linearized TS-type fuzzy model to guarantee the convergence of on-line training process. Also the initialization of the linearized TS-type fuzzy model is very important to speed-up the convergence rate. This will be based on the least-squared identification. It must be emphasized that once the linearized TS-type fuzzy model of the uncertain nonlinear system is obtained in real-time environment, the on-line adaptive controller can be easily designed to accomplish the design specifications, i.e., stabilizing the unknown nonlinear system, tracking of a reference signal, …, etc. A simplified tracking controller is also proposed to perform the tracking of a reference signal for the unknown nonlinear system. Two nonlinear systems, i.e., mass-spring-damper, inverted pendulum system, and Chua’s chaotic circuit are fully illustrated to track sinusoidal signals. The resulting on-line indirect adaptive controller shows excellent results.

摘要 I
ABSTRACT II
CONTENTS III
LIST OF FIGURES IV
LIST OF TABLES VI
Chapter 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Brief sketch of the contents 2
Chapter 2 DERIVATION OF JACOBIAN MATRICES FOR NONLINEAR SYSTEM 3
2.1 Introduction 3
2.2 Mass-spring-damper system 4
2.3 Inverted Pendulum system 6
2.4 Truck trailer system 8
2.5 Leon Chua’s circuit 9
Chapter 3 THE TS-TYPE FUZZY MODEL FOR UNCERTAIN NONLINEAR SYSTEMS 12
3.1 Introduction for TS-type fuzzy model 12
3.2 Back-propagation rules for TS-type fuzzy model 13
Chapter 4 ON-LINE OPTIMAL TRAINING WITH LEAST SQUARED INITIALIZATION 15
4.1 The optimal training for TS-type fuzzy model 15
4.2 The least square initialization for TS-type fuzzy model 17
Chapter 5 STABLE TRACKING CONTROLLER FOR TS-TYPE FUZZY MODEL OF UNCERTAIN NONLINEAR SYSTEMS 22
Chapter 6 EXAMPLES 27
6.1 Example 1: Mass-spring-damper 27
6.2 Example 2: Inverted pendulum 33
6.3 Example 3: Leon Chua’s chaotic circuit 43
Chapter 7 CONCLUSIONS 51
Reference 52

[1] T. C. Hsia, “System Identification”, Lexington Books, 1977.
[2] G. A. Rovithakis and M. A. Christodoulou, “Direct Adaptive Regulation of Unknown Nonlinear Dynamical Systems via Dynamic Neural Networks,” IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 1578-1594, Dec. 1995.
[3] H. O. Wang, K. Tanaka, M. F. Griffin, ”An approach to fuzzy control of nonlinear systems: stability and design issues”, IEEE Transactions on Fuzzy Systems, Vol. 4, p.p. 14-23, Feb. 1996.
[4] T. Takagi and M. Sugeno, ”Fuzzy Identification of Systems and Its Applications to Modeling and control,” IEEE Trans. Syst., Man, Cybern., Vol. 15, pp. 116-132, Jan./Feb., 1985.
[5] Shing-Jen Wu and Chih-Teng Lin, “Optimal Fuzzy Controller Design: Local Concept Approach,” IEEE Trans. On Fuzzy Systems, Vol. 8, No. 2, pp. 171-183, April 2000.
[6] Shing-Jen Wu and Chih-Teng Lin, “Optimal Fuzzy Controller Design in Continuous Fuzzy System: Global Concept Approach,” IEEE Trans. On Fuzzy Systems, Vol. 8, No. 6, pp. 713-729, Dec., 2000.
[7] Shing-Jen Wu and Chih-Teng Lin, “Discrete-Time Optimal Fuzzy Controller Design: Global Concept Approach,” IEEE Trans. On Fuzzy Systems, Vol. 10, No. 1, pp. 21-38, Feb., 2002.
[8]. A. Isidori, Nonlinear Control Systems, 2nd ed., Berlin, Germany: Springer-Verlag, 1989.
[9] Y. G. Leu, T. T. Lee and W. Y. Wang, “Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems,” IEEE Trans. Syst., Man, Cybern. Part B: Cybernetics, vol. 29, pp. 583-591, Oct., 1999.
[10] C. H. Wang, H. L. Liu and T. C. Lin, “Direct Adaptive Fuzzy-Neural Control With State Observer and Supervisory Controller for Unknown Nonlinear Dynamical Systems,” IEEE Trans. On Fuzzy Systems, Vol. 10, No. 1, Feb., 2002.
[11] B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach,” IEEE Trans. Fuzzy Syst. vol. 4, pp. 32-43, Feb. 1996.
[12]. A. V. Topalov and O. Kaynak, “Online Learning in Adaptive Neurocontrol Schemes with a Sliding Mode Algorithm,” IEEE Trans. Syst., Man, Cybern. Part B: Cybernetics, Vol. 31, No. 3, pp. 445-450, June 2001.
[13] Chi-Hsu Wang, Han-Leih Liu, Chin-Teng Lin, “Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm”, IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 31, p.p. 467 -475 June 2001.
[14] K. Tanaka, T. Ikeda, ad H. O. Wang, “A Unified Approach to Controlling Chaos via an LMI-Based Fuzzy Control System Design,” IEEE Trans. Circuits and Systems, vol. 45, pp. 1021-1040, Oct. 1998.
[15] C. S. Tseng, B. S. Chen, and H. J. Uang, “Fuzzy Tracking Control Design for Nonlinear Dynamic Systems via T-S Fuzzy Model,” IEEE Trans. Fuzzy Systems, vol. 9, pp. 381-392, June 2001.
[16] K. Tanaka, T. Ikeda, and H. O. Wang, ”Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stability, H∞ control theory and linear matrix inequality,” IEEE Trans. Fuzzy Syst. vol. 4, p.p. 14-23, Feb. 1996.
[17] S. S. Sastry and A. Isidori, “Adaptive control of linearization systems,” IEEE Trans. Automat. Contr., vol. 34, pp. 1123-1131, 1989.
[18] R. Marino and P. Tomei, “Globally adaptive output-feedback control on nonlinear systems, part I: Linear parameterization,” IEEE Trans. Automat. Contr., vol. 38, pp. 17-32, 1993.
[19] R. Marino and P. Tomei, “Globally adaptive output-feedback control on nonlinear systems, Part II: Nonlinear parameterization,” IEEE Trans. Automat. Contr., vol. 38, pp. 33-48, 1993.
[20] B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach,” IEEE Trans. Fuzzy Syst. vol. 4, pp. 32-43, Feb. 1996.
[21] G. A. Rovithakis and M. A. Christodoulou, “Adaptive control of unknown plants using dynamical neural networks,” IEEE Trans. Syst., Man, Cybern., vol. 24, pp. 400-412, Mar. 1994.
[22] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 1, pp.146-155, May, 1993.
[23] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.
[24] J. T. Spooner and K. M. Passino, “Stable adaptive control using fuzzy systems and neural networks,” IEEE Trans. Fuzzy Syst., vol. 4, pp.339-359, Aug. 1996.
[25] X. J. Ma and Z. Q. Sun, “Output tracking and regulation of nonlinear system based on Takgi-Sugeno fuzzy model,” IEEE Trans. Syst., Man, Cybern., vol. 30, pp. 47-59, Feb., 2000.
[26] A. S. Park, W. Yu, E. N. Sanchez and J. P. Perez, “Nonlinear adaptive tracking using dynamic neural networks,” IEEE Trans. Neural Networks, vol. 10, pp. 1402-1411, Nov., 1999.
[27] Y. G. Leu, T. T. Lee and W. Y. Wang, “Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems,” IEEE Trans. Syst., Man, Cybern., vol. 29, pp. 583-591, Oct., 1999.
[28] C. H. Wang, W. Y. Wang, T. T. Lee and P. S. Tseng, “Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control,” IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 841-851, May., 1995.
[29] Y. G. Leu, T. T. Lee and W. Y. Wang, “Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems,” IEEE Trans. Robotics and Automation, vol. 15, pp. 805-817, Oct. 1999.
[30] C. T. Chen, Linear System Theory and Design 3rd edition. Oxford University Press, Inc., 1999.
[31] J. L. Castro, “Fuzzy logical controllers are universal approximators,” IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 629-635, Apr. 1995.
[32] M. Sugeno, “On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents,” IEEE Trans. Fuzzy Syst., vol. 7, pp.201-224, Apr., 1999.
[33] C. T. Lin and Y. C. Lu, “A Neural Fuzzy System with Fuzzy Supervised Learning”, IEEE Trans. Syst. Man Cyber., Vol. 26, No. 5, pp. 744-763 ,Oct. 1996.
[34] X. H. Yu, G. A. Chen, S. X. Cheng, “Dynamic Learning Rate Optimization of the Backpropagation Algorithm”, IEEE Trans. On Neural Networks, Vol. 6, No. 3, pp. 669- 677, May 1995.
[35] S. Horikawa, T. Furuhasi and Y. Uchikawa, “On Fuzzy Modeling Using Fuzzy Neural Networks with Back-Propagation Algorithm”, IEEE Trans. on Neural Networks, Vol. 3, No. 5, pp. 801-806, Sept. 1992.
[36] B. Kosko, Neural Network and Fuzzy Systems, Prentice Hall, Eaglewood Cliffs, NJ. 1992.
[37] Suleiman Barada and Harpreet Singh, “Generating Optimal Adaptive Fuzzy-Neural Models of Dynamical Systems with Applications to Control”, IEEE Trans. on Syst. Man Cyber., Vol. 28, No. 3, pp. 371-390 , Aug. 1998.
[38] W. A. Farag, V. H. Quintana and G. Lambert-Torres, “A Genetic-Based Neural-Fuzzy Approach for Modeling and Control of Dynamical Systems”, IEEE Trans. on Neural Networks, Vol. 9, No. 5, pp. 756-767, Sept. 1998.
[39] F. Cuesta, F. Gordillo, J. Aracil, and A. Ollero, “Stability Analysis of Nonlinear Multivariable Takagi-Sugeno Fuzzy Control Systems,” IEEE Trans. Fuzzy Syst., vol. 7, pp.508-519, Oct., 1999.
[40] O. Begovich, E. N. Sanchez, and M. Maldonado, “T-S Scheme for Trajectory Tracking of an Underactuated Robot,” in Proc. Fuzzy_IEEE. 2000, pp.798-803 San Antonio, Texas, USA May, 2000.
[41] K. Tanaka, T. Ikeda, and H. O. Wang, ”Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability , H∞ control theory and linear matrix inequality,” IEEE Trans. Fuzzy Syst. vol. 4, p.p 14-23, Feb. 1996.
[42] H.O. Wang, K. Tanaka,” An LMI-based stable fuzzy control of nonlinear systems and its application to control of chaos”, Proceedings of the Fifth IEEE International Conference on Fuzzy Systems 1996, vol. 2, p.p. 1433-1438, 1996.
[43]. K. S. Narenda and K. Parthasarathy, ”Identification and Control of dynamical systems using neural network,” IEEE Trans. Neural Networks, Vol. 1, No. 1, pp. 4-27, 1992.
[44] H. Wang, K. Tanaka, and M. Griffth,” Parallel distribution compensation of nonlinear system by Takagi and Sugeno’s fuzzy model,” in Proc. FUZZ-IEEE’95, Yokohama, Japan. p.p. 531-538, Mar. 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top