(54.236.58.220) 您好!臺灣時間:2021/02/27 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張逸屏
研究生(外文):Yi-ping Chang
論文名稱:長時段禪定腦電波總覽之系統化方法
論文名稱(外文):A Systematic Approach for Long-term Meditation EEG Overview
指導教授:羅佩禎羅佩禎引用關係
指導教授(外文):Pei-Chen Lo
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:63
中文關鍵詞:禪定腦電波分割分類特徵萃取
外文關鍵詞:meditationEEGsegmentationclassificationfeature extraction
相關次數:
  • 被引用被引用:3
  • 點閱點閱:346
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:7
本篇論文的目的是發展一個系統化方法以提供長時段禪定腦電波信號(electroencephalograph, EEG)之總覽。此方法將長時段腦電波信號轉換為能夠快速檢視的摘要結果。
本論文提出的方法包括四個主要步驟:(1)分割;(2)特徵萃取(量化);(3)分類;與(4)結果視覺呈現。第一個步驟將腦電波依給定criteria分割。接著萃取出每個區段的特徵向量並加以分類,如此則具有類似波形的區段將分類在同一個類別。最後,分析結果包含兩部份:(1)各類別隨時間的演變,也就是腦電波紀錄的簡化總覽,和(2)對應於每一類別的代表腦電波波形。除此之外,本論文亦探討分類步驟中的參數影響,並以數種典型的禪定腦電波波形進行模擬。此系統化之方法將有助於長時段腦電波信號檢閱和禪定腦電波之深入研究。
The aim of this thesis is to develop a systematic approach to provide an overview of long-term meditation EEG (electroencephalograph). This approach translates the long-term EEG raw record into a summary report which can be evaluated at a glance.
The proposed method involves four key steps: (1) segmentation; (2) feature extraction (quantification); (3) classification; and (4) display for visualization. The first step is to break the EEG into segments of similar characteristics based on pre-specified criteria. Then the feature vector of each segment is extracted and classified. Thus, the segments with similar patterns are clustered into the same group. Finally, the results include two parts: (1) the chronological evolution of clusters, that is, the compressed temporal profile of the EEG record, and (2) the representative EEG waveform pattern of each cluster. In addition, the parameters in the clustering strategy are discussed. Some case studies using typical meditation EEG patterns are conducted in this thesis. This systematic approach could assist us in reviewing the long-term EEG of different states and further investigating the meditation process.
1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . 1
1.2 Scope of This Research Study . . . . . . . . . . . . . . . 3
2 Theories and Methods Applied in This Thesis 4
2.1 EEG Segmentation Based on Non-linear Energy Operator . . . 4
2.1.1 Non-linear Energy Operator (NLEO) . . . . . . . . . .6
2.1.2 Segmentation Algorithm . . . . . . . . . . . . . . . 9
2.1.3 Considerations . . . . . . . . . . . . . . . .. . . 11
2.2 Quantificaton of Features of EEG Segments . . . . . . . . 12
2.2.1 Artifact Rejection . . . . . . . . . . . . . . . . 13
2.2.2 Amplitude Measurement . . . . . . . . . . . . . . . 14
2.2.3 Frequency Measurement . . . . . . . . . . . . . . . 14
2.2.4 Computation of Peak-to-peak Magnitude . . . . . . . 17
2.2.5 Construction of Multi-channel Feature Vectors . . . 17
2.2.6 Normalization of Feature Vectors . . .. . . . . . . 18
2.3 Feature Classification . . . . . . . . . . . . . . . . . 18
2.3.1 K-means Clustering Algorithm. . . . . . . . . . . . 19
2.3.2 Modified K-means Clustering Process. . . . . . . . 23
2.3.3 Outlier Identification . . . . . . . . . . . . . . 26
2.4 Formats and Meaning of the Display . . . . . . . . . . . .28
3 Considerations and Performance of the Proposed Method 29
3.1 Parameters in Clustering . . . . . . . . . . . . . . . . 29
3.1.1 Measure the Cluster Similarity . . . . . . . . . . 30
3.1.2 Determine the Number of Clusters . . . . . . . . . 33
3.2 Simulation with Typical Meditation EEGs . . . . . . . . . 34
3.2.1 Segmentation Results . . . . . . . . . . . . . . . 36
3.2.2 Feature Quantification and Classification . . . . . 36
3.2.3 Display of the Final Results of Simulation . . . . 42
4 Experiments and Results 43
4.1 The Experiment Protocol . . . . . . . . . . . . . . . . 43
4.2 Strategies for Analyzing the Meditation EEG . . . . . . . 44
4.2.1 Pre-processing . . . . . . . . . . . . . . . . . . 44
4.2.2 A Flowchart Illustrating the Strategies . . . . . 45
4.3 Experiment Results . . . . . . . . . . . . . . . . . . . 45
4.3.1 Case I . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Case II . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Case III . . . . . . . . . . . . . . . . . . . . . 53
5 Conclusion and Discussion 56
5.1 Summary of the Current Work . . . . . . . . . . . . . . . 56
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . 57
[1] R. K. Wallace, ”Physiological effects of Transcendental Meditation,” Science, Vol. 167, pp. 1751-1754, 1970.
[2] R. K. Wallace, J. Silver, P. J. Mills, M. C. Dillbeck and D. E. Wagoner, ”Systolic blood pressure and long-term practice of the Transcendental Meditation and TMSidhi program: Effects of TM on systolic blood pressure,” Psychosomatic Medicine,
Vol. 45(1), pp. 41-46, 1983.
[3] A. J. W. Bevan, P. M. Young, M. L. Wellby, P. Nenadovic and J. A. Dickings, ”Endocrine changes in relaxation procedures,” Proceedings of the Endocrine Society of Australia, Vol. 19, pp. 59 (Abstract), 1976.
[4] R. Jevning, A. F. Wilson and J. M. Davidson, ”Adrenocortical activity during meditation,”Hormones and Behavior, Vol. 10(1), pp. 54-60, 1978.
[5] C. N. Alexander, E. J. Langer, R. I. Newman, H. M. Chandler and J. L. Davies,”Transcendental Meditation, mindfulness, and longevity: an experimental study with the elderly,” Journal of Personality and Social Psychology, Vol. 57(6), pp. 950-964, 1989.
[6] D. W. Jr. Doner, ”The Transcendental Meditation technique—a ”self-care” program for the dialysis/transplant patient,” Journal of the American Association of Nephrology Nurses and Technicians, Vol. 3(3), pp. 119-125, 1976.
[7] P. Kember, ”The Transcendental Meditation technique and academic performance:A short report on a controlled longitudinal pilot study,” British Journal of Educational
Psychology, Vol. 55, pp. 164-166,1985.
[8] F. Travis, ”Creative thinking and the Transcendental Meditation technique,” Journal of Creative Behavior, Vol. 13(3), pp. 169-180,1979.
[9] J. P. Banquet, ”Spectral analysis of the EEG in meditation,” Electroencephalography and Clinical Neurophysiology, Vol. 35, pp. 143-151,1973.
[10] M. C. Dillbeck, D. W. Orme-Johnson and R. K. Wallace, ”Frontal EEG coherence, H-reflex recovery, concept learning, and the TM-Sidhi program,” International Journal of Neuroscience, Vol. 15, pp. 151-157, 1981.
[11] J. Eyerman, ”Transcendental Meditation and mental retardation,” Journalof Clinical Psychiatry, Vol. 42(1), pp. 35-36, 1981.
[12] H. D. Lovell-Smith, ”Transcendental Meditation—treating the patient as well as the disease,” The New Zealand Family Physician, Vol. 9, pp. 62-65, 1982.
[13] E. N. Aron and A. Aron, ”The patterns of reduction of drug and alcohol use among Transcendental Meditation participants,” Bulletin ofthe Society of Psychologists in
Addictive Behaviors, Vol. 2(1), pp. 28-33, 1983.
[14] T. Candelent and G. Candelent, ”Teaching Transcendental Meditation in a psychiatric setting,” Hospital & Community Psychiatry , Vol. 26(3), pp.156-159, 1975.
[15] C. R. Bleick and A. I. Abrams, ”The Transcendental Meditation program and criminal recidivism in California,” Journal of Criminal Justice, Vol. 15, pp. 211-230,
1987.
[16] J. S. Hagelin, M. V. Rainforth K. L. C. Cavanaugh, et al”., ”Effects of Group Practice of the Transcendental Meditation Program on Preventing Violent Crime in
Washington, D.C.: Results of the National Demonstration Project, June—July 1993,”Social Indicators Research, Vol. 47, No. 2, pp. 153-201, 1999.
[17] P. D. Assimakis, ”Change in the quality of life in Canada: interventionstudies of the effect of the Transcendental Meditation and TM-Sidhi program,” Abstract published in Dissertation Abstracts International, Vol. 50(5), Sec. B, pp. 2203, November 1989.
[18] J. S. Barlow, O. D. Creutzfeldt, D. Michael, J. Houchin and H. Epelbaum, ”Automatic adaptive segmentation of clinical EEGs,” Electroencephalography and Clinical Neurophysiology, vol. 51, pp. 512-525, 1981.
[19] G. Bodenstein and H. M. Praetorius, ”Feature extraction from the electroencephalogram by adaptive segmentation,” Proc. IEEE, vol. 65, pp. 642-652, 1977.
[20] D. Michael and J. Houchin, ”Automatic EEG analysis: a segmentation procedure based on the autocorrelation function,” Electroencephalography and Clinical Neurophysiology, vol. 46, pp. 232-235, 1979.
[21] V. Krajca, S. Petranek, I. Patakova and A. Varrii, ”Automatic identification of significant graphoelements in multichannel EEG recording by adaptive segmentation and fuzzy clustering,” International Journal of Biomedical Computing, vol. 28, pp. 71-89, 1991.
[22] U. Appel and A. V. Brandt, ”Adaptive sequential segmentation of piecewise stationary time series,” Information Sciences, vol. 29, pp. 27-56, 1983.
[23] M. Basseville and A. Benveniste, ”Sequential detection of abrupt changes in spectral characteristics of digital signals,” IEEE Transactions on Information Theory, vol. IT-
29, No. 5, pp. 709-724, 1983.
[24] R. Agarwal and J. Gotman, ”Adaptive segmentation of electroencephalographic data using a nonlinear energy operator,” Proc. IEEE ISCAS’99, June 1999, vol. 4, pp.
199-202.
[25] J. F. Kaiser, ”On a simple algorithm to calculate the ’energy’ of a signal,” Proc. IEEE International Conference Acoustics, Speech, and Signal Processing, Albuquerque,
NM, April, 1990, 1: pp. 381-384.
[26] E. I. Plotkin and M. N. S. Swamy, ”Nonlinear signal processing based on parameter invariant moving average modeling,” Proc. CCECE ’21, Toronto, Canada, September
1992, pp. TM3.11.1—TM3.11.4.
[27] E. I. Plotkin and M. N. S. Swamy, ”Signal processing based on parameter structural modeling and separation of highly correlated signals of known structure,” Circuits, Systems, Signal Processing, vol. 17, pp. 51-68, 1998.
[28] O. D. Creutzfeldt, G. Bodenstein and J. S. Barlow, ”Computerized EEG pattern classification by adaptive segmentation and probability-density-function evaluation,”
Electroencephalography and Clinical Neurophysiology, vol. 60, pp. 373-393, 1985.
[29] B. Hjorth, ”EEG analysis based on time domain properties,” Electroencephalography and Clinical Neurophysiology, vol. 29, pp. 306-310, 1970.
[30] T. Pietela, S. Vapaakoski, U. Nousianinen, A. Varri, H. Frey, V. Hakkinen and Y. Neuvo, ”Evaluation of a computerized system for recognition of epileptic activity during long-term EEG recording,” Electroencephalography and Clinical Neurophysiology, vol. 90, pp. 438-443, 1994.
[31] R. Agarwal, J. Gotman, D. Flanagan and B. Rosenblatt, ”Automatic EEG analysis
during long-term monitoring in the ICU,” Electroencephalography and Clinical
Neurophysiology, vol. 107, pp. 44-58, 1998.
[32] A. Papoulis, ”Probability, Random Variables, and Stochastic Processes. 3rd Ed.," McGraw-Hill Inc 1991. (ISBN: 0-07-048477-5).
[33] N. Levinson, ”The Wiener RMS error criterion in filter design and prediction," Journal of Mathematics and Physics, vol. 25, 1947.
[34] S. Haykin, ”Communication Systems. 3rd E.," John Wiley, 1994. (ISBN:0-471-57176-8)
[35] K. Fukunaga, ”Introduction to Statistical Pattern Recognition. 2nd Ed.," Academic Press, Inc. 1990.
[36] M. F. Jiang, S. S. Tseng and C. M. Su, ”Two-phase clustering process for outliers detection,” Pattern Recognition Letters, vol. 22, pp. 691-700, 2001.
[37] D. L. Davies and D.W. Bouldin, ”A cluster separation measure,” IEEE transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-1, pp. 224-227, 1979.
[38] S. Gupta and H. Singh, ”Preprocessing EEG signal for direct Human-System Interface,”IEEE International Joint Symposia on Intelligence and Systems, pp. 32-37, 1996.
[39] E. Niedermeyer and F. L. D. ilva, "Electroencephalography: Basic Principles, 4th Ed.," Williams & Wilkins, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔