|
[1] James L. Peterson, Petri Net Theory And The Modeling Of Systems, Englewood Cliffs, NJ: Prentice Hall, 1981. [2] S. Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ: Prentice Hall, 1988. [3] S. Y. Kung, Digital Neural Networks, Englewood Cliffs, NJ: Prentice Hall, 1993. [4] S. Haykin, Neural Networks: A Comprehensive Foundation, Upper Saddle River,NJ: Prentice Hall, 1999. [5] S. Y. Kung. and J. N. Hwang, “Parallel architecture for artificial neural network nets,” Int. Conf. on Neural Networks, San Deigo, California, vol. 2, pp. 166-175, 1998. [6] Y. J. Jang, C. H. Park, and H. S. Lee, “A programmable digital neural-processor design with dynamically reconfigurable pipeline/parallel architecture,” in Proc. 1998 Int. Conf. on Parallel and Distributed Systems, 1998, pp.18-24. [7] C. F. Jang and B. J. Sheu, “Design of a digital VLSI neural processor for signal and image processing,” in Proc. Neural Networks for Signal Processing, 1997, pp. 606-615. [8] S. Shams and K. W. Przytual, “Mapping of neural networks onto programmable parallel machines,” IEEE Trans. on Circuits and Systems, vol. 4, pp. 2613-2617, 1990. [9] J. J. Shyu, “VLSI design of RBF neural networks,” Master Thesis, National Chiao Tung University, Hsinchu, Taiwan, R. O. C., 1999. [10] C. H. Kuo, “A systolic array based VLSI design of RBF neural networks,” Master Thesis, National Chiao Tung University, Hsinchu, Taiwan, R. O. C., 2000. [11] Y. L. Lee, “Study on reconfigurable System-On-Chip architecture based on dataflow computing,” Master Thesis, National Chiao Tung University, Hsinchu, Taiwan, R. O. C., 2001. [12] C. M. Wu, “Study on reconfigurable scheduling for heterogeneous System-On-Chip architecture,” Master Thesis, National Chiao Tung University, Hsinchu, Taiwan, R. O. C., 2001. [13] S. Y. Kung and J. N. Hwang, “A unified systolic architecture for artificial neural networks,” Journal of Parallel and Distributed Computing, vol. 6, pp. 358-387, 1989. [14] C. A. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1989. [15] D. Hammerstrom., “A vlsi architecture for high performance, low cost, on-chip learning,” IJCNN , vol. 2, pp. 537-544, 1990. [16] U. Ramacher, J. Beichter, N. Brula, and E. Sicheneder, “Architeuture and VLSI design of a VLSI neural signal processor,” 1999 IEEE International Symposium on Circuit and Systems, vol. 3, pp. 1976-1978, 1999. [17] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Qualitative Approach, Second Edition, Morgan Kaufmann, 1996. [18] K. C. Chang, Digital Systems Design with VHDL and Synthesis, Computer Society, 1999. [19] C. T. Lin and C. S. George Lee, Neural Fuzzy System, NJ: Prentice Hall, 1996. [20] H. Oh and S. C. Kothari, “Adaptation of the relaxation method for learning in bi-directional associative memory,” IEEE Trans. on Neural Network, vol. 5, pp. 576-583, 1994. [21] D. G. Elliott, M. Stumm, et. al., “Computational RAM: implementing processors in memory,” IEEE design & Test of Computers, vol. 16, pp. 32-41, 1997. [22] A. Amira, A. Bouridane, et. al., “A high throughput FPGA implementation of a bit-level matrix product.” IEEE workshop on Signal Processing System, SiPS 2000, pp. 356-364, 2000. [23] A. Kramer, “Array-based analog computation,” IEEE Micro, vol. 16, pp. 40-49, 1996. [24] P. Pouliquen, A. G. Andreou, K. Strohbehn, “Winner-takes-all associative memory: a hamming distance vector quantizer,” Journal of Analog Integrated Circuits and Signal Processing, vol. 13, pp. 211-222, 1997. [25] A. Chiang, “A programmable CCD signal processor,” IEEE Journal of Solid-States Circuits, vol. 25, pp. 1510-1517, 1990. [26] C. Neugebauer and A. Yariv, “A parallel analog CCD/CMOS neural network IC.” Proc. IEEE Int. Joint Conference on Neural Networks, Seatle, WA, vol. 1, pp. 447-451, 1991. [27] F. Kub, K. Moon, I. Mack, and F. Long, “Programmable analog vector-matrix multipliers,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 207-214, 1990. [28] A. G. Andreou, K. A. Boahen, and P. O. Pouliquen, “Current-mode subthreshold MOS circuits for analog VLSI neural networks,” IEEE Trans. on Neural Networks, vol. 2, pp. 205-213, 1991. [29] J. C. Gealow and C. G. Sodini, ”A pixel-parallel image processor using logic pitch-matched to dynamic memory,” IEEE J. Solid-State Circuits, vol. 34, pp. 831-839, 1999. [30] H. Watanabe, W. D. Dettloff, and K. E. Yount, “A VLSI fuzzy logic controller with reconfigurable and cascadable architecture,” IEEE J. Solid-State Circuits, vol. 25, pp. 376-382, 1990. [31] K. Nakamura et. al., “A 12-bit resolution 200 KFLIPS fuzzy inference processor,” IEICE Trans. Electronics, vol. 10, pp. 1102-1111, 1993. [32] A. Hiraiwa, M. Fujita, S. Kurosu, S. Arisawa, and M. Inoue, “Implementation of ANN on RISC processor array,” in Proc. Int. Conf. on Application Specific Array Processors, 1990, pp. 677-688. [33] J. N. Hwang and S. Y. Kung, “A systolic neural network architecture for hidden Markov models,” IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 37, pp. 1967-1979, 1989. [34] Z. G. Xie, “Chip implementation of a processor for multiple neural networks models,” Master Thesis, National Taiwan University, Taipei, Taiwan, R. O. C., June 1995.
|