跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳忠君
研究生(外文):Chung-Chun Chen
論文名稱:振動式微陀螺儀電路系統之研究
論文名稱(外文):The Study of Circuitry of Vibrating Microgyroscope
指導教授:邱俊誠邱俊誠引用關係
指導教授(外文):Jin-Chern Chiou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:振動式微陀螺儀弦波振盪器位移感測器ΣΔ A/D 轉換器
外文關鍵詞:Vibrating MicrogyroscopeSinusoidal OscillatorCapactive Positive Sense CircuitΣΔ A/D Cinverter
相關次數:
  • 被引用被引用:5
  • 點閱點閱:565
  • 評分評分:
  • 下載下載:139
  • 收藏至我的研究室書目清單書目收藏:2
本篇論文的研究方向是發展三層多晶矽振動式微陀螺儀的電路系統,其電路系統包含弦波震盪器、位移感測器和ΣΔ A/D轉換器。為了達到積體化的設計目標,所有的電路設計均採用VLSI技術來實現。因此本文將利用適合的電路架構,以獲得穩健的電路系統。
首先,我們採用OTA-C的弦波振盪器,此電路架構在振盪條件與振幅控制上,都是使用轉導放大器的增益作為調整設計,因此OTA-C的設計方式較適合積體電路的實現。其次,位移感測電路我們採取差動式輸出的架構,原因是此電路對於電磁干擾、電源雜訊與熱雜訊有較佳的抵抗力。最後在類比轉數位的訊號上,由於ΣΔ A/D轉換器不像傳統轉換器,必須使用高精度的模組或是增加校正的裝置,來獲得全系統較高的精度。所以在VLSI的技術中,這些架構可以充分得到高解析度類比-數位轉換器的需求,比其他高精確度的類比元件更適合在快速的數位電路中實現。
本文最後將以SIMULINK® 來模擬二階ΣΔ A/D轉換器,其中考慮大多數ΣΔ調變器的非理想現象,藉以觀察量化誤差現象。並列舉單迴路二階ΣΔ調變器電路作為設計目標,其有效解析度為16位元。

The circuitry of Y-axis vibrating microgyroscope is developed in a monolithic MEMS/circuits technology with VLSI and three layers of polysilicon thin films. The circuitry is consisted of sinusoidal oscillator, position sense circuits, and ΣΔ A/D converter. In order to achieve robust circuitry, suitable circuitry architecture was developed.
Firstly, the sinusoidal oscillator with OTA-C structure is adopted, the oscillation condition and amplitude control of the structure are adjusted by tuning the gain of tranconductance. Since the structure contains only capacitors, thus, OTAs can be accomplished for CMOS implementation. Secondly, the position sensing circuit utilizes the differential readout for the reason that it is unsusceptible to EMI, supply variations and thermal noise. Finally, unlike traditional converters, the ΣΔ A/D converter requires high precision building blocks or correction mechanisms to obtain global precision. Note that ΣΔ A/D converters show very low sensitivity to the imperfections of the circuitry, at the price of extensive use of digital signal processing. Therefore, these architectures are adequate to achieve high-resolution A/D conversion in VLSI technologies; furthermore it is more suitable for implementing fast digital circuits than accurate analog circuits.
Finally, the simulation of 2nd order ΣΔ modulator using SIMULINK® is conducted by taking account of most of the sigma-delta modulator non-idealities. The simulation can be used to observe the quantitative error of the designed system. By designing a single loop, single bit, 2nd order ΣΔ modulator, we are able to achieve effective resolution of 16 bits.

中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文架構 4
第二章 振動式微陀螺儀系統原理簡介 5
2.1 振動式微陀螺儀系統之操作原理與規格 6
2.2 振動式微陀螺儀致動器與感測器的設計原理 9
2.2.1 導體間的靜電力 9
2.2.2 平行板電容間的靜電力 11
2.2.3 三平行板電容 12
2.3 陀螺儀在慣性導航系統中的應用 17
2.3.1 陀螺儀進動補償 17
2.4 振動式微陀螺儀製程考量 24
2.5 總結 24
第三章 振動式微陀螺儀之驅動電路 26
3.1 韋恩橋式振盪器 26
3.2 OTA-C弦波振盪器 28
3.3 總結 33
第四章 位移感測電路 35
4.1 電荷感測基本觀念 35
4.2 位移感測電路 36
4.2.1 雙取樣校正電路(Correlated Double Sampling,CDS) 37
4.2.2 差動式輸出之位移感測電路 42
4.3 總結 45
第五章 過度取樣ΣΔ A/D轉換器電路 46
5.1 基本 A/D 轉換器 47
5.2 Sigma-Delta A/D 轉換器之過度取樣基本觀念 49
5.3 基本觀念 50
5.3.1 過度取樣和量化雜訊 52
5.3.2 ΣΔ調變器的基本架構 54
5.3.3 訊雜比、動態範圍和等效解析度 57
5.3.3.1 訊雜比 ( SNR 或是 S/N ) 58
5.3.3.2 動態範圍 ( DR ) 58
5.3.3.3 有效的解析度 (B) 59
5.4 SIGMA-DELTA 調變器 59
5.4.1 二階 ΣΔ 調變器 60
5.4.2 單回路高階調變器 62
5.4.2.1 穩定性考慮 63
5.4.3 高階 ΣΔ 調變器架構 64
5.4.3.1 單一迴圈調變器 64
5.4.3.2 疊接的調變器 66
5.4.4 多位元量化之 ΣΔ 調變器 68
5.5 ΣΔ 調變器的比較與評價 70
5.6 使用 SIMULINK® 模擬 Sigma-Delta 調變器[20] 70
5.6.1 時脈的不穩定性 71
5.6.2 積分器雜訊 72
5.6.2.1 切換熱雜訊 73
5.6.2.2 運算放大器雜訊 74
5.6.3 積分器的非理想效應 75
5.6.3.1 直流增益 76
5.6.3.2 頻寬和回轉率 76
5.6.3.3 電壓飽和 78
5.6.4 模擬結果 78
5.7 二階ΣΔ 調變器電路 80
5.7.1 單迴路二階ΣΔ調變器設計規格[35] 81
5.7.2 放大器設計 82
5.7.3 時脈相位產生設計 84
5.7.4 比較器設計 85
5.8 總結 86
第六章 結論 87
6.1 結論 87
6.2 未來展望 88
參 考 文 獻 89
附錄A 93

[1] Jacob Fraden, Handbook of modern sensors physics, designs, and applications, AIP Press 2nd ed., 1997.
[2] Toshiyuki Tsuchiya, Yasuyuki Kageyama, Hirofumi Funabashi, Jiro Sakata, “Vibrating gyroscope consisting of three layers of polysilicon thin films”, Sensors and Actuators A: Physical Volume: 82, Issue: 1-3, May 15, 2000, pp. 114-119.
[3] K.Tanaka, Y.Mochida, M. Sugimoto, K. Moriya, T. Hasegaea, K. Atsuchi, K. Ohwada, “A micromachined vibrating gyroscope”, Sensors and Actuators A: Physical Volume: 50, Issue: 1-2 August, 1995, pp. 111-115.
[4] Yoichi Mochida, Masaya Tamura, Kuniki Ohhwada, “A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes”, Sensors and Actuators A: Physical Volume: 80, Issue: 2 March 10, 2000, pp.170-178.
[5] W.C. Tang, M.G. Lim, R.T. Howe, Electrostatic comb drive levitation and control method, J. Microelectromech. Syst. 1 (4) 1992 170-178
[6] 黃國興, 慣性導航系統原理與應用, 全華科技圖書, 1991.
[7] 「微機電元系課堂講義」,交通大學電子系黃宇中編,1998年6月.
[8] E. Obermeier, “Actuatoric”, Technical University Berlin, Germany.
[9] 張文清、蔡佩珊,SPICE 電子電路模擬,鼎茂圖書, 1990.
[10] B. Linares-Barranco, A. Rodríguez-Vázquez, J. L. Huertas and E. Sánchez -Sinencio, J. J. Hoyle, ”Generation and Design of Sinusoidal Oscillators Using OTAS”, Circuits and Systems, IEEE International Symposium on, vol.3, pp. 2863 —2866, 1988.
[11] B. Linares-Barranco, A. Rodríguez-Vázquez, E. Sánchez-Sinencio, J. L. Huertas, “CMOS OTA-C High-Frequency Sinusoidal Oscillators”, IEEE J. of Solid-State Circuits, vol. 26, pp.160-165, 1991.
[12] B. Linares-Barranco, A. Rodríguez-Vázquez, E. Sánchez-Sinencio, J. L. Huertas, ”Generation, design and tuning of OTA-C high-frequency sinusoidal osciators”, IEEE Proceedings-G vol.139, pp. 557-568, 1992.
[13] Mitsuhiro Yamada, Kenzo Watanabe, ”A Capacitive Pressure Sensor Interface Using Oversampling Σ-Δ Demodulation Techniques”, IEEE Trans. Instrum. Meas., vol. 46, pp. 3-7, Feb. 1997.
[14] Park, Y. E. and Wise, K. D., ”An MOS switched-capacitor readout amplifier for capacitive pressure sensors”, IEEE Custom IC Conf., pp. 380-384, 1983.
[15] Schoneberg, U.; Schnatz, F.V.; Brockherde, W.; Kopystynski, P.; Mehlhorn, T.; Obermeier, E.; Benzel, H. “CMOS integrated capacitive pressure transducer with on-chip electronics and digital calibration capability”, Solid-State Sensors and Actuators, pp304-307, 1991.
[16] N. Wongkomet, D. A. Horsley, and B. E. Boser, “Correlated Double Sampling in Capacitive Positin Sensing Circuits for Micromachined Applications,” in Proceedings IEEE Asia-Pacific Conference on Circuits and Systems, pp. 723-726. November 1998.
[17] Bernhard E. Boser, ”Capacitive Position Sense Circuit”, Berkeley Sensor & Actuator Center, Dept. of Electrical Engineering and Computer Sciences University of California, 1996.
[18] Bernhard E. Boser, ”Electronics for Micromachined Inertial Sensor”, Berkeley Sensor & Actuator Center, Dept. of Electrical Engineering and Computer Sciences University of California, 1997.
[19] Xuesong Jiang, Joseph I. Seeger, Michael Kraft*, Bernhard E. Boser, ”A monolithic surface micromachined Z-axis gyroscope with digital output” VLSI Circuits, Digest of Technical Papers, 2000 Symposium on, pp. 16-19, 2000.
[20] S. Brigati, F. Francesconi, P. Malcovati, D. Tonietto, A. Baschirotto and F. Maloberti, “Modeling Sigma-Delta Modulator Non-Idealities in SIMULINK®” Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS ‘99), Orlando, USA, 2, pp. 384-387, 1999.
[21] SIMULINK® and MATLAB® User’s Guides, The MathWorks, Inc., 1997.
[22] B. E. Boser, B. A. Wooley, “The Design of Sigma-Delta Modulation Analog-to-Digital Converters”, IEEE J. Solid-State Circ., vol. 23, pp. 1298-1308, Dec. 1988.
[23] S. R. Norsworthy, R. Schreier, G. C. Temes, “Delta-Sigma Data Converters. Theory, Design and Simulation”, IEEE Press, Piscataway, NJ, 1997.
[24] J. C. Candy, G. C. Temes, Oversampling Delta-Sigma Data Converters Theory, Design, and Simulation, IEEE Press, 1992.
[25] F. Medeiro, B. Perez-Verdu, A. Rodriguez-Vazquez, J. L. Huertas, “Modeling OpAmp-Induced Harmonic Distortion for Switched-Capacitor ΣΔ Modulator Design”, Proeedings of ISCAS ‘94, vol. 5, pp. 445-448, London, UK, 1994.
[26] Fernando Medeiro, Angel Pérez-Verdú, Angel Rodríguez-Vázquez, Top-Down Design of High-Performance Sigma-Delta Modulators, Kluwer Academic Publishers, 1999.
[27] S. Moshen Moussavi, Bosco H. Leung,“High-Order Single-Stage Single-Bit Oversampling A/D Converter Stabilized with Local Feedback Loops”, IEEE Transactions on Circuit and Systems, Vol. 41, pp.19-25, January 1994.
[28] W. L. Lee, C. G. Sodini,“A Topology for Higher Order Interpolative Coders”, in Proc. of IEEE International Symposium on Circuits and Systems, pp. 459-462, 1987.
[29] Adel S. Sedra, Kenneth C, Smith, Microelectronic Circuits, Oxford University Press, 4th, 1998.
[30] Thomas L. Floyd, David Buchla, Basic Operational Amplifiers and Linear Integrated Circuits, Prentice Hall, 2nd, 1999.
[31] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGRAW-HILL, 2001.
[32] David A. Johns, Ken Martin¸ Analog Integrated Circuit Design, John Wiley & Sons, 1997.
[33] Roubik Gregorian, Gabor C. Temes, Analog MOS Integrated Circuits for Signal Processing”, John Wiley & Sons, 1986.
[34] Alan V. Oppenheim, Ronald W. Schafer, John R. Buck, Discrete-Time Signal Processing, Prentice Hall, 2nd, 1999.
[35] Fernando Medeiro, Belén Pérez-Verdú, José M. de la Rosa, Ángel Rodríguez -Vázquez, “Using CAD Tools for Shortening the Design Cycle of High -Performance ΣΔM: A 16.4bit 9.6kHz 1.71mW ΣΔM in CMOS 0.7 μm Technology”, International Journal of Circuit Theory and Applications, Vol.25, pp. 319-334, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top