跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林玟叡
論文名稱:類神經網路為基礎之非線性系統的最佳化模糊控制器設計
論文名稱(外文):Neural Network Based Optimal Fuzzy Controller Design for Nonlinear Systems
指導教授:李祖添李祖添引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:55
中文關鍵詞:最佳化模糊控制
外文關鍵詞:Takagi-Sugeno fuzzy model
相關次數:
  • 被引用被引用:3
  • 點閱點閱:886
  • 評分評分:
  • 下載下載:325
  • 收藏至我的研究室書目清單書目收藏:0
在這篇研究中,我們提出了一個對未知的非線性系統,整合其模糊模型建立與最佳化模糊控制之方法。首先我們可以藉由線性的自建類神經模糊推論網路 ( linear self- constructing neural fuzzy inference network ) 得到非線性系統的Takagi-Sugeno (T-S) 模型。有了非線性系統的輸入與輸出的資料後,線性的自建類神經模糊推論網路可以動態的增加模糊規則的數目,並且調整各規則的參數,使得輸出的誤差最小化。如果每個子系統都是完全可控制與完全可觀察,我們便可將 [24]-[26] 中的最佳化模糊控制的設計方法,應用在所建立的T-S 模型上。當系統的模型無法得知的時候,這篇研究可以提供一個方法來穩定並最佳化控制這個物理系統。我們用四個例子來說明這個方法的設計流程。
In this work, we propose an integrated approach to fuzzy modeling and optimal fuzzy control for unknown nonlinear systems. We first obtain the Takagi-Sugeno (T-S) fuzzy model of the nonlinear plant by linear self-constructing neural fuzzy inference network (linear SONFIN). With training input and output data of the nonlinear system, linear SONFIN can dynamically increase the number of fuzzy rules, and also adjust the parameters of each rule to minimize the output error. Then, if each fuzzy subsystems is completely controllable and completely observable, we can apply the optimal fuzzy controller design scheme [24]-[26] to the proposed linear T-S fuzzy model. In the case of system model is unavailable, this approach can provide a way to stabilize and optimal control the physical system. Four examples are given to demonstrate the design procedure of this approach.
CONTENTS
摘要 I
ABSTRACT II
CONTENTS III
LIST OF FIGURES IV
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Survey of Fuzzy Model 1
1.3 Survey of Fuzzy Control 2
1.4 Brief Sketch of the Contents 3
CHAPTER 2 NEURAL NETWORK BASED SYSTEM MODELING 4
2.1 Linear T-S Fuzzy System 4
2.2 Structure of Linear SONFIN 4
2.3 T-S Fuzzy Modeling of physical system 8
CHAPTER 3 OPTIMAL FUZZY CONTROLLER DESIGN 15
3.1 Local Concept Approach 15
3.2 global concept approach 17
CHAPTER 4 INTEGRATION OF FUZZY SYSTEM MODELING AND OPTIMAL CONTROLLER DESIGN 21
CHAPTER 5 CONCLUSION 40
REFERENCES 41
APPENDIX A 43
APPENDIX B 48
[1] S. G. Cao, N. W. Rees, and G. Feng, “Analysis and design for a class of complex control systems─Part I: Fuzzy modeling and identification,” Automatica, vol. 33, no. 6, pp. 1017—1028, 1997.
[2] R. A. Hilhorst, J. Van Amerongen, P. Lohnberg, and H. J. A. F. Tulleken, “A supervisor for control of model-switch processes,” Automatica, vol. 30, pp. 319—1331, 1994.
[3] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear system: stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 14—23, Feb. 1996.
[4] J. J.Buckley, “Universal fuzzy controller,” Automatica, vol. 28, pp. 1245-1248, 1992.
[5] H.O. Wang, K. Tanaka, and M. Griffin, “Parallel distributed compensation of nonlinear systems by Takagi and Sugeno''s fuzzy model,” in Proc. FUZZ-IEEE''95, pp. 531—538, 1995.
[6] K. Tanaka, T. Ikeda, and H. O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, control theory and linear matrix inequalities,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 1—13, Jan. 1996.
[7] T. Takagi. and M. Sugeno, ”Fuzzy identification of system and its application to modeling and control,” IEEE SMC, vol.15, no.1, pp.116-132, 1985.
[8] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets Syst., vol. 45, pp. 135—156, 1992. Syst., vol. 4, pp. 14—23, Feb. 1996.
[9] E. H. Mamdani, “Applications of fuzzy algorithms for control of simple dynamic plant,” Proc. Inst. Elect. Eng., vol. 121, no. 12, pp. 1585—1588, 1974.
[10] L. P. Holmblad and J. J. Ostergaard, “Control of a cement kiln by fuzzy logic,” in Fuzzy Information and Decision Processes, M. M. Gupta and E. Sanchez, Eds. Amsterdam, The Netherlands: North-Holland, 1982.
[11] H.O. Wang, J. Li, D. Niemann and K. Tanaka,. ”T-S fuzzy model with linear rule consequence and PDC controller: a universal framework for nonlinear control system,” Fuzzy Syst., Vol. 2 , pp. 549-554, 2000.
[12] H.K. Lam; F.H.F. Leung; P.K.S. Tam, “Stable and robust fuzzy control for uncertain nonlinear systems” IEEE Trans. Syst., Man, Cybern. , Vol. 30, pp. 825 —840, Nov. 2000.
[13] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets Syst., vol. 28, pp. 15—33, 1988.
[14] Chia-Feng Juang and Chin-Teng Lin, “An online self-constructing neural fuzzy inference network and its applications,”, IEEE Trans. Fuzzy Syst. , Vol. 6 Issue: 1 , pp. 12-32, Feb. 1998.
[15] H. O. Wang and K. Tanaka, “An LMI-based stable fuzzy control of non-linear systems and its application to control of chaos,” in Proc. FUZZ-IEEE''96, vol. 2, pp. 1433—1438, 1996.
[16] K. Tanaka, T. Ikeda, and H. O. Wang, “Design of fuzzy control systems based on relaxed LMI stability condition,” in IEEE Conf. Decision Contr., vol. 1, pp. 598—603, 1996.
[17] ─, “An LMI approach to fuzzy controller designs based on relaxed stability conditions,” in Proc. FUZZ-IEEE''97, vol. 1, pp. 171—176, 1997.
[18] X. J. Ma, Z. Q. Sun, and Y. Y. He, “Analysis and design of fuzzy controller and fuzzy observer,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 41—51, Feb. 1998.
[19] H. J. Kang and C. Kwon, “ robust stability analysis for the fuzzy feedback linearization regulator,” in Proc. FUZZ-IEEE''97, vol. 1, pp. 277—280, 1997.
[20] K. S. Ray and D. D. Maunder, “Application of the circle criteria for stability analysis of linear SISO and MIMO systems associated with fuzzy logic controllers,” IEEE Trans. Syst., Man, Cybern., vol. 2, pp. 345—349, Mar./Apr. 1984.
[21] L. X. Wang, “A supervisory controller for fuzzy control systems that guarantees stability,” in Proc. FUZZ-IEEE''94, Orlando, FL, pp. 1035—1039, 1994.
[22] L. X. Wang, “Stable and optimal fuzzy control of linear systems,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 137—143, Feb. 1998.
[22] K. Tanaka, T. Taniguchi, and H. O. Wang, “Fuzzy control based on quadratic performance function,” in 37th IEEE Conf. Decision Contr., Tampa, FL, pp. 2914—2919, 1998.
[23] ─, “Model-based fuzzy control of TORA system: Fuzzy regulator and fuzzy observer design via LMI’s that represent decay rate, disturbance rejection, robustness, optimality,” in Proc. FUZZ-IEEE''98, Alaska, pp. 313—318, 1998.
[24] Shinq-Jen Wu; Chin-Teng Lin “Optimal fuzzy controller design: local concept approach”, IEEE Trans. Fuzzy Syst., pp. 171 -185, April 2000.
[25] Shinq-Jen Wu; Chin-Teng Lin, “Optimal fuzzy controller design in continuous fuzzy system: global concept approach” IEEE Trans. Fuzzy Syst. , pp. 713 —729, Dec. 2000.
[26] Shinq-Jen Wu; Chin-Teng Lin, ” Discrete-time optimal fuzzy controller design: global concept approach” IEEE Trans. Fuzzy Syst , Vol. 10, pp. 21-38, Feb. 2002.
[27] K. Tanaka and M. Sano, “Trajectory stabilization of a model car via fuzzy control,” Fuzzy Sets Syst., vol. 70, pp. 155—170, 1995.
[28] M. Tokunaga and H. Ichihashi, “Backer-upper control of a trailer truck by neuro-fuzzy optimal control,” in Proc. 8th Fuzzy System Symp., pp. 49—52, May 1992.
[29] K. Tanaka and T. Kosaki “Design of a stable fuzzy controller for an articulated vehicle,” IEEE Trans. Syst., Man, Cybern. , Vol. 27, pp. 552-558, June 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top