跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/27 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊維
論文名稱:以模糊類神經為基礎的適應性導航控制
論文名稱(外文):Fuzzy Neural Networks Based Adaptive Cruise Control
指導教授:李祖添李祖添引用關係
指導教授(外文):Tsu-Tian Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:48
中文關鍵詞:適應性導航控制模糊類神經
外文關鍵詞:Adaptive Cruise ControlFuzzyNeural Networks
相關次數:
  • 被引用被引用:2
  • 點閱點閱:671
  • 評分評分:
  • 下載下載:241
  • 收藏至我的研究室書目清單書目收藏:0
在智慧型運輸系統(ITS)中的先進車輛控制與安全系統裡,適應性導航控制(ACC)系統扮演著一個相當重要的角色。當前方有車輛時,ACC系統會進到跟車模式,跟隨前方的車輛並保持一定的安全距離;當前方沒有車輛時,ACC 系統會自動切換到定速模式,以一個預先設定的速度行駛。其中車輛油門與煞車的角度及切換的根據主要是依據車輛上的感測器,來偵測與前方車輛的相對速度及相對距離。在這裡我們利用模糊類神經網路來設計我們的控制器。利用模糊類神經網路的好處在於我們不需要知道複雜非線性的車輛動態模型。而且類神經網路具有學習的功能,可以透過學習使控制器適用於各種車輛。我們將ACC控制器分為三個部分:第一個部分是根據目前的交通狀況(相對速度及相對距離)和駕駛者的駕駛型式來決定車子需要多少加(減)速度;第二個部分是根據目前的車速及第一個部分所得到的加(減)速度來決定車子應該加多少油門或踩多少煞車;第三個部分則是用來補償誤差及干擾的。我們利用MATLAB程式在電腦上模擬真實的車輛及真實的環境,並同時考慮駕車舒適度及系統延遲時間來檢驗ACC控制器的性能。根據模擬結果顯示,所提出以模糊類神經網路為基礎的控制器可以提供一個安全、舒適和便利的駕駛,而且可以自動切換於跟車與定速兩種模式。
Adaptive Cruise Control (ACC) System is an important part of the Advanced Vehicle Control and Safety System (AVCSS) in Intelligent Transportation Systems (ITS). In this thesis we design an ACC controller based on fuzzy neural networks for following a leading vehicle to achieve the desired safety distance, or cruising at the pre-selected speed. The transmission between the two maneuvers is carried out automatically. The advantage of using fuzzy neural networks is that it doesn’t require the complete knowledge of nonlinear vehicle dynamics, and it can be applied to any vehicle regardless of its nonlinear or unobservable dynamics. We separate the ACC controller into three parts. The first one is used to determine the desired acceleration according to the current traffic situation (relative speed and relative distance) and driver’s driving style, the second one is used to determine the throttle angle or braking command depending on the current vehicle speed and desired acceleration, and the last one is used to compensate the modeling error and disturbances. The performance of ACC controller is evaluated based on a complex traffic model, which includes the accurate nonlinear vehicle dynamic model and various environments, and simulated by a computer with MATLAB software. The vehicle is assumed to be equipped with sensors that can measure the relative distance and vehicle speed. In addition, we also take maximum allowable jerks and the system delay into account. The fuzzy logic and neural networks based controller proposed in this thesis provides a safe, convenient and comfortable driving assistance system. The controller can switch between car following and cruise control automatically.
摘要 Ⅰ
Abstract Ⅱ
Contents Ⅲ
List of Figure Ⅳ
List of Table Ⅴ
Chapter1 Introduction 1
Chpater2 Longitudinal Vehicle Model 6
Chapter3 Overall Structure of the Adaptive Cruise Control 15
Chapter4 Simulation results 31
Chapter5 Conclusions 48
References
[1] Intelligent Transportation Society of Taiwan, http://www.its-taiwan.org.tw
[2] W. D. Jones, “Keeping Cars from Crashing” IEEE Spectrum, Vol. 38, Issue 9, pp. 40-45, Sept. 2001
[3] M. A. Goodrich and E. R. Boer, “Designing Human-Centered Automation: Tradeoffs in Collision Avoidance System Design” IEEE Transactions on Intelligent Transportation Systems, Vol. 1, No. 1, March 2000
[4] J. Mar, “An ANFIS Controller for the Car-Following Collision Prevention System”, IEEE Transactions on Vehicular Technology, Vol. 50, No. 4, July 2001
[5] W. D. Jones, “Building Safer Cars 2002 IEEE”, IEEE Spectrum, Vol. 39, Issue 1, pp. 82-85, Jan. 2002
[6] C. C. Chien and P. Ioannou, “Autonomous Intelligent Cruise Control”, IEEE Transactions on Vehicular Technology, Vol. 42, No. 4, November, 1993
[7] A. Kanaris, P. Ioannou and F. S. Ho, “Spacing and Capacity Evaluations for Different AHS Concepts”, Proceedings of the American Control Conference, Vol. 3, pp. 2036 —2040, 1997
[8] C. C. Chien and P. Ioannou, “Automatic Vehicle Following 1992”, Proc. 1992 American Control Conference, Chicago, pp. 1748-1752
[9] D. Swaroop and K. R. Rajagopal, “A Review of Constant Time Headway Policy for Automatic Vehicle Following”, Proceedings of the IEEE Intelligent Transportation Systems Conference, pp. 65-69, August 2001
[10] D. Yanakiev and I. Kanellakopoulos, “Nonlinear Spacing Policies for Automated Heavy-Duty Vehicles”, IEEE Transactions on Vehicular Technology, Vol. 47, Issue 4, November 1998
[11] K. Santhanakrishnan and R. Rajamani, “On Spacing Policy for Highway Vehicle Automation”, Proceedings of the American Control Conference, Vol. 3, pp. 1509-1513, 2000
[12] S. E. Shladover, “Longitudinal control of automated highway transit vehicles within platoons” ASME J.Dynamics, Measurement and control, vol. 100, pp. 302-310, 1978
[13] M. Hoedemaeker and K. A. Brookhuis, “Behavioural adaptation to driving with an adaptive cruise control (ACC)”, Transportation Research, Vol. 1F, No. 2, Dec., pp. 95-106
[14] R. Holve and P. Protzel, “Adaptive Fuzzy Control for Driver Assistance in Car-Following”, Proc. of the 3rd European Congress on Intelligent Techniques and Soft Computing, pp. 1149-1153, Aug. 1995
[15] S. B. Choi, “Vehicle Longitudinal Control Test”, Research Report UCB-ITS-PWP-94-15, California PATH Working Paper, October 1994
[16] P. Kachroo, M. Tomizuka and A. M. Agogino, "A Comprehensive Strategy for Longitudinal Vehicle Control with Fuzzy Supervisory Expert System", 1995 IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp 765-770, 1995
[17] T. Tai and M. Tomizuka, “Robust Longitudinal Velocity Tracking of Vehicles Using Traction and Brake Control, Proceedings of 6th International Workshop on Advanced Motion Control, pp. 305-310, 2000
[18] J. K. Hedrick, D. McMahon, V. Narendran and D. Swaroop, “Longitudinal Vehicle Controller Design for IVHS Systems”, American Control Conference, pp. 3107-3112, 1991
[19] W. K. Lennon and K. M. Passino, “Intelligent Control for Brake Systems”, IEEE Trans. Contr. Syst. Technol. , vol. 7, no. 2, March 1999
[20] J. Bengtsson, R. Johansson and A. Sjogren, “Modeling of Driver’s Longitudinal Behavior 2001 IEEE/ASME”, Proc. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Vol. 2, pp. 1076 —1081, 2001
[21] H. Ohno, “Analysis and Modeling of Human Driving Behaviors Using Adaptive Cruise Control”, Industrial Electronics Society, 2000. IECON 2000. The 26th Annual Conference of the IEEE, Vol. 4, pp. 2803 —2808, 2000
[22] S. Huang and W. Ren, “Safety, Comfort, and Optimal Tracking Control in AHS Applications”, IEEE Control Systems
[23] P. Ioannou, F. Ahmed-Zaid and D.H. Wuh, “A time Headway Autonomous Intelligent Cruise Controller: Design and Simulations”, Research Report UCB-ITS-PWP-94- 07, University of Southern California, April 1994
[24] Y. Zhang, E. B. Kosmatopoulos and P. Ioannou, “Autonomous Intelligent Cruise Control Using Front and Back Information for Tight Vehicle Following Maneuvers”, IEEE Transactions on Vehicular Technology, Vol. 48, No. 1, pp. 319-328, 1999
[25] P. Ioannou and Z. Xu, “Throttle and Brake Control Systems for Automatic Vehicle Following”, IVHS Journal, Vol. 1, pp. 345-377, 1994.
[26] H. Raza and P. Ioannou, “Vehicle Following Control Design for Automated Highway Systems”, IEEE Control Systems Magazine, Special Issue on Automotive Control Systems, Vol. 16, No.6, pp. 43-61, Dec. 1996
[27] D. Godbole and J. Lygeros, “Longitudinal control of the lead car of a platoon,” TECH MEMO-93-07, Univ, California, Berkeley, Rep., 1993
[28] S. Sheikholeslam and C. A. Desoer, “Longitudinal of a platoon of Vehicles with no communication of lead vehicle information: A System Level Study”, IEEE Transactions on Vehicular Technology, Vol. 42, No. 4, November, 1993
[29] M. Persson, F. Botling, E. Hesslow and R. Johansson, “Stop and go controller for adaptive cruise control”, Proceedings of the 1999 IEEE International Conference on Control Applications, vol. 2, pp. 1692 —1697, 1999
[30] P. Venhovens, K. Naab and B. Adiprasito, “Stop and go cruise control”, Proc. of the 2000 FISITA World Automotive Congress, Seoul, Korea, June
[31] P. Protzel, R. Holve, J. Bernasch and K. Naab, “Fuzzy Distance Control for Intelligent Vehicle Guidance”. Proc. of the 12th Annual Meeting of the North American Fuzzy Information Processing Society, Allentown PA, Aug. 22-25, 1993, 87-91
[32] R. Holve, P. Protzel and K. Naab, “Generating Fuzzy Rules for the Acceleration Control of an Adaptive Cruise Control System”, Fuzzy Information Processing Society, pp. 451-455, 1996
[33] N. C. Griswold, N. D. Kehtarnavaz and K. M. Miller, “A Transportable Neural Network Controller for Autonomous Vehicle Following”, Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 195-200, Oct. 1994
[34] H. Fritz, “Model-Based Neural Distance Control for Autonomous Road Vehicles”, Proceedings of the Intelligent Vehicles Symposium, pp. 29-34, 1996
[35] Y. Omura, S. Funabiki and T. Tanaka, “A monocular vision-based position sensor using neural networks for automated vehicle following”. Power Electronics and Drive Systems, 1999. PEDS ''99. Proceedings of the IEEE 1999 International Conference on , Volume: 1 , 1999, page(s): 388 -393 vol.1
[36] K. S. Chang and J. S. Choi, “Automatic Vehicle Following using the Fuzzy Logic”, Proceedings of Vehicle Navigation and Information Systems Conference, pp. 206-213, 1995
[37] N. Kehtarnavaz, E. Nakamura, N. Griswold and J. Yen, “Autonomous Vehicle Following by a Fuzzy Logic Controller”, in Proceedings of NAFIPS/IFIS/NASA ''94, pp. 333-337 San Antonio, December 18-21, 1994
[38] Ph. Garnier and Th. Fraichard, “A Fuzzy Motion Controller for a Car-Like Vehicle”, Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3, pp. 1171-1178, 1996
[39] P. Chakroborty and S. Kikuchi, “Evaluation of the General Motors based car-following models and a proposed fuzzy inference model”, Transportation Research Part C7, pp. 209-235, 1999
[40] P. M. De Koker, J. Gouws and L. Pretorius, “Fuzzy Control Algorithm for Automotive Traction Control Systems”, Electrotechnical Conference, MELECON ''96, 8th Mediterranean, Vol. 1, pp. 226 —229, 1996
[41] Th. Fraichard and Ph. Garnier, “Fuzzy Control to Drive Car-Like Vehicles”, Robotics and Autonomous Systems. - Under submission (August 1997)
[42] H. M. Kim, J. Dickerson and B. Kosko, “Fuzzy throttle and brake control for platoons of smart cars”, Research Report UCB-ITS-PRR-95-42, University of Southern California, December 1995
[43] Y. J. Ryoo and Y. C. Lim, “Neuro-fuzzy control system for vision-based autonomous vehicle”, Proceedings of the 1999 IEEE International Conference on Fuzzy Systems, Vol. 3, pp. 1643 —1648, 1999
[44] H. Nomura, I. Hayashi and N. Wakami, “A learning Method of Fuzzy Inference Rules by Descent Method”, IEEE International Conference on Fuzzy Systems, pp. 203-210, 1992
[45] 劉英標, 汽車性能測試與檢驗, 全威, 1998
[46] 黃靖雄, 賴瑞海, 現代汽車自動變速箱理論與實際, 正工, 1993
[47] C. T. Lin and C.S. George Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, Prentice Hall International, Inc., 1999
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top