跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉子安
研究生(外文):Tze-An Liu
論文名稱:光激發半導體產生高功率寬頻THz輻射源之研究
論文名稱(外文):Researches of High Power and Broad band THz radiation from semiconductors
指導教授:潘犀靈
指導教授(外文):Ci-Ling Pan
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:165
中文關鍵詞:飽和布拉格反射體泰拉赫茲幅射光導天線偶極天線螺旋天線多重量子井砷離子佈值砷化鎵
外文關鍵詞:Saturable Bragg ReflectorTHz radiationphotoconductive antennadipole antennaspiral antennamultiple quantum wellarsenic ion implanted gallium arsenide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
本文探討光激發在不同種類的半導體表面產生THz輻射。首先在高功率光源的研究中,我們報導利用紐曲式飽和布拉格反射體當穩定被動鎖模元件並加入連續波放大器在雷射共振腔內可產生高達1.62W的輸出。此飽和布拉格反射體的暫態微分反射率由4%變成-0.6%隨著激發光波長從755nm到760nm,顯示在能隙附近有著很強的非線性效應與吸收。 雷射共振腔的端面改成一般的飽和布拉格反射體在0.88T的強磁場施加下,並以此紐曲式飽和布拉格反射體當被動鎖模元件,可產生將近45nW的THz輻射功率其中心輻射頻率與頻寬約在0.7THz。 同樣情況下以InAs塊材放在共振腔內與入射光成85度的斜角入射情形下,可產生的輻射功率與中心頻率分別約為5nW與0.4THz。
在高功率與寬頻THz輻射源的研究中,我們用三種不同的元件來分析砷離子佈值砷化鎵與半絕緣性砷化鎵的輻射特性。在1mm到0.02mm間隙的光導天線研究中,我們發現已半絕緣性砷化鎵為基版的天線隨偏壓的增加而呈現性增加到最後將近4kV/vm即因電流過大而超過儀器極限,而砷離子佈值砷化鎵卻在1mm與0.5mm的天線中發現飽和的現象,而偏壓已加到8kV/cm且振幅已與半絕緣性砷化鎵時相當或更高。兩者的THz電場強度、幅射中心與頻寬均約為0.15kV/cm、0.5THz 與 1THz,這表示只要將樣品降到適度的低溫下再加大偏壓產生更高功率的輻射是可能的。 在5mm間隙共振偶極天線的研究上,砷離子佈值砷化鎵材料可產生輻射的中心頻率為較半絕緣性砷化鎵時為高(分別為0.9THz與0.7THz,頻寬約為1.2THz),且當施加更高的偏壓時,輻射振幅已超過半絕緣性砷化鎵。 在5mm與2mm間隙,直徑約300mm與120mm的螺旋天線研究中,間隙為2mm的半導體材料有著中心波長低到0.32THz與頻寬高達0.74THz寬頻輻射可用來作為材料在THz波段的頻譜分析。
利用非線性現象產生THz的輻射中,我們以10對扭曲式多層膜量子阱在1T的強磁場下產生在能隙附近有共振現象的THz輻射,其中心頻率約為0.7THz對應頻寬約0.9THz,亦比中心頻率僅有0.45THz的半絕緣性砷化鎵為高,表示MQW非線性效應主導THz幅射引致中心頻率往高頻移動。

In this thesis, we demonstrate the optical excited semiconductor to generate high power and broadband THz radiation. We report a new type of femtosecond amplification scheme in which a strained saturable bragg reflector (SSBR) with low saturation flurence was used for self-starting mode-locking, and an intracavity CW amplifier system was used to scale the average output power. As the amplifier rod was pumped from 0 W to 15 W, the output power was linearly increased from 1.1 W to 1.62 W. Stable mode locking was achieved at the same time. For the research of the passive mode-locker-SSBR, the magnitude of transient DR/R have large changes from 4% to -0.6% from 755nm to 760nm caused by the large optical nonlinearities of band filling, screening effect, surface field enhancement and free carrier absorption near the band edge. Intra-cavity saturable Bragg Reflector in the magnetic field of 0.88T with self-started mode-locking by Strained Saturable Bragg Reflector can generate THz-radiation with an average power~45 nW. Its center frequency and bandwidth is around 0.7 THz. Bulk InAs was placed in the cavity with 85 degree shallow incident angle for high optical reflectivity. The average power and spectrum of THz-radiation was around 5 nW and peaked around 0.4 THz with respectivity. The advantage of this scheme is the simple emitter structure and applicability to other laser media.
In the study of THz emitter, we had demonstrate three types of antennas for the investigate of high power and road band THz emitter. In the mid-aperture photoconductive antenna, voltage dependence THz radiation in S.I. GaAs is linearly increased, however it is saturated in the 1mm and 0.5mm of GaAs:As+ case. Both THz field, center frequency and bandwidth are around 0.15kV/cm, 0.5THz and 1THz. This implied that it could be applied for even higher voltage for higher THz radiation. Saturation behavior is shown in the power dependence THz radiation from S.I. GaAs with gap size of 1mm and 0.5 mm. However, it is more linearly in the case of GaAs:As+. For even higher pumping power, it is possible to generate higher THz radiation amplitude. In dipole antenna, waveform compared between S.I. GaAs and multi implant GaAs:As+ show that the negative peak of GaAs:As+ is higher than the S.I. GaAs which from the fast photocurrent decay time of GaAs:As+. With spectrum blue shifted from 0.7THz to 0.9THz and band width around 1.2THz in GaAs:As+ compared to S.I. GaAs. For the broadband emitter in spiral antenna, the low frequency component is enhanced, however the higher frequency had not shown the increase behavior. In the 2um gap size spiral antenna, it present the lower center frequency of 0.32 THz and larger bandwidth of 0.74 THz shown the applicable in the broad band THz emitter. The fast carrier life time and high break down voltage of GaAs:As+ had shown the candidate for the high power and broad band THz radiation.
For the nonlinearity material of the broadband emitter, we report the optically excited THz radiation from ten MBE-grown strained MQWs on an (100)-oriented semi-insulating GaAs substrate in a 1 T magnetic field. Obviously resonant absorption had shown at band edge which perform the nonlinear effect induce THz radiation. Center frequency and bandwidth are around 0.7THz and 0.9THz respectively which higher than the case of S.I. GaAs with center frequency of 0.45THz. In the thin MQW sample, the THz emission is still significant. This indicates the possibility of designing MQWs as efficient THz emitters in the future.

Abstract………………………………………………………………………………..i
Acknowledgement……………………………………………………………………v
Contents…………………………………………………………………….……......vi
Figures and Tables…………………………………………………………………...x
Chapter 1: Introduction
1-1 Background of THz Radiation ………………………………………..1
1-2 High average power mode locked laser...……………………………..2
1-3 Ultrafast Carrier dynamics of semiconductors………………………..2
1-3-1 Carrier dynamics of MQWs…………………………………....2
1-3-2 Carrier dynamics of nonlinear semiconductor absorber-SSBR.....3
1-3-3 Carrier dynamics of arsenic-ion-implanted GaAs and related devices ………………………………………………………......4
1-4 THz radiation from intracavity semiconductor emitter of mode-locked laser………………………………………………………………….…4
1-5 THz radiation from photoconductive antenna…………………….…..4
1-5-1 Large aperture photoconductive antenna…………………...…...4
1-5-2 Small gap dipole antenna……………………………………..…5
1-6 THz radiation from MQWs…………………………….…………..…5
1-7 Motivation and organization…………………..……….…………...…6
1-7-1 Motivation………………………………….…….…………..…6
1-7-2 Organization of thesis…………………………….…………..…6
Reference…………………………….……………………………………..…7
Chapter 2: High-Average-Power Mode-locked Ti:Sapphire laser with Intracavity Continuous-Wave Amplifier and Strained Saturable Bragg Reflector
2-1 Introduction of the high power laser system……………………..….17
2-2 Experimental set up of the CW amplifier……………………..……..17
2-3 Experimental results .……………………………….………..……...18
2-3-1 Amplified laser performance………………….………..…..…...18
2-3-2 Laser pulse build up time……………….…….………..…..…...18
2-4 Conclusion…………………………………...…….………..…..…...19
Reference…………………………….……………………………………...20
Chapter 3: Characterization of a triple Strained Quantum Well Saturable Bragg Reflector
3-1 Introduction…………….…………………………………….……...26
3-2 Experimental set up….…………………………………….….….....27
3-3 Experimental results….…………………………………….……..…27
3-3-1 Nonlinearity of SSBR from time-resolved photo-reflectivity…..27
3-3-2 Carrier dynamics of SSBR from time-resolved carrier lifetime measurement….…………………………………….………......28
3-3-3 Saturation Fluence measurement………………….…...…….....29
3-4 Laser pulse build up from SSBR……………………….…...…….....29
3-5 Pulse formation after reflected from SSBR…………….…...…….....29
3-5-1 Introduction and motivation…………………….…...………...30
3-5-2 Experimental method…………………….…...………………..30
3-5-3 Chirp analysis of the SSBR…………….…...……..…………..30
3-5-4 Discussions…………….…...……..……………………….…..32
3-6 Conclusion………….…...……..…………..…………………….…..32
Reference………….…...……..…………..…………………….…………..33
Chapter 4: Novel intense THz radiation from laser intracavity emitter
4-1 Introduction to intracavity THz radiation…………….………….…..51
4-2 THz-radiation from intra-cavity Saturable Bragg Reflector in the magnetic field with self-started mode-locking by Strained Saturable Bragg Reflector…..…………..…………………….………………...52
4-2-1 Experimental set up and intracavity laser performance Carrier dynamics of MQWs…..…………………….……………….....52
4-2-2 THz radiation power and spectrum performance………….....52
4-3 Bulk InAs mirror as a THz-radiation intra-cavity emitter in a femtosecond mode-locked Ti:sapphire laser…….………………..….54
4-3-1 Experimental set up and intracavity laser performance Carrier dynamics of MQWs…..…………………….……………...….....54
4-3-2 THz radiation power and spectrum performance……...……...54
4-4 Conclusion……..…………..…………………….…………………..55
Reference……..…………..…………………….…………………………..56
Chapter 5: THz radiation from arsenic-ion-implanted GaAs fabricated antennas
5-1 Introduction…..…………………….……………...………………...68
5-2 Material properties of arsenic-ion-implanted GaAs………………...68
5-2-1 Sample preparation…………………………………….……...68
5-2-2 Electrical properties…………………………………….……...69
5-2-3 Ultrafast Carrier dynamics of GaAs:As+……………….……..70
5-3 Theoretical analysis of THz Emission from photoconductive antennas………………………………………………………………70
5-3-1 Large aperture photoconductive antenna(>5mm) with EO detection……………………………………………..…………70
5-3-2 Mid-Gap (<1mm~0.1mm) Photoconductive antennas with EO detection and the screening effect consideration……..……..…72
5-3-3 THz distortion in the EO detection………………..…..………74
5-3-4 Small gap dipole antenna with photoconductive detection……75
5-3-5 spiral antenna with photoconductive detection………………..76
5-4 System set up………………………………………………………..76
5-5 THz Emission Characteristics of large aperture photoconductive antennas with different gap size fabricated on GaAs: As+ / S. I. GaAs……………………………………………………………...…..77
5-5-1 THz radiation from multi-GaAs: As+ and S. I. GaAs fabricated photoconductive antenna……………………………………..78
5-5-2 Discussion……………………………………………………..80
5-6 THz emission from Semi-Insulated GaAs / Arsenic ion implanted GaAs on small gap dipole antenna as the broad band emitter………..82
5-7 THz emission from Semi-Insulated GaAs / Arsenic ion implanted GaAs on spiral antenna as the low frequency enhanced broad band emitter…………………………………………………………...……83
5-7-1 Sample preparation………….…………………………………83
5-7-2 Comparison of waveform and spectrum between S.I. GaAs, multi-GaAs:As+ (100,200keV) and single GaAs:As+ (200keV)………………………………………………..……83
5-7-3 Comparison of pumping power and applied voltage dependence THz amplitude between S.I. GaAs and multi-GaAs:As+ (100,200keV) ……………………………………………..……84
5-8 Conclusion………………………………………………….…..……84
Reference………………………………………………………………..…..86
Chapter 6: Research of THz radiation from MQWs
6-1 Introduction………………………………………………………...123
6-2 Carrier dynamics of strained MQWs……………………………….123
6-2-1 Sample preparation and system set up………………………..124
6-2-2 Experimental results………………………………………….124
6-3 Theoretical study of optical rectification and THz radiation……….124
6-3-1 THz emission from bulk semiconductors……………….….125
6-3-2 THz emission from semiconductor quantum wells………...125
6-3-3 THz emission from semiconductors under magnetic field…...126
6-4 THz radiation generation and measurement set up………………...127
6-5 Experimental results……………………………………………….128
6-5-1 Wavelength dependence THz radiation with Bolometer detection………………………………………………………………..128
6-5-2 Wavelength dependence THz radiation with EO detection.….129
6-5-3 Wavelength dependence THz radiation from normal MQW with EO detection……………………………………………….….129
6-6 Conclusion………………………………………………………….130
Reference…………………………………………………….……………..131
Chapter 7: Conclusions and Future prospects
7-1 Conclusions………………………………………………………...158
7-2 Future Prospects…………………………………………………....159
Publication List………………………………….………………….....…161

chap1:
[1]X. C. Zhang et al., Appl. Phys. Lett., 56, 2228, 1990.
[2]B. I. Greene et al., IEEE J. Quantum Electron., 28, 2302, 1992.
[3]A. Reklaitis, Phys. Lett., A99, 450, 1983.
[4]N. Katzenellenbogen and D. Grischkowsky., Appl. Phys. Lett., 58, 222, 1991.
[5]R.F.Kazarinov and R.A.Suris, Sov. Phys. Semicond. 5, 707 (1971)
[6]Q.Hu and S.Feng,Appl. Phys.Lett., 59, 2923(1991)
[7]M. Tani, R. Fukasawa, H. Abe, S. Matsuura, and K. Sakai: J. Appl. Phys., 83,2473, (1998)
[8]C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz and K. Köhler: Phys. Rev. Lett. 70 (1993) 3319.
[9]A. S. Weling, and D. H. Auston: J. Opt. Soc. Am. B. 13 (1996) 2783
[10]M. Tani, M. Tonouchi, Z. Wang, K. Sakai, M. Hangyo,S. Tomozawa, and Y. Murakami, Jpn. J. Appl. Phys. 35, 1184, (1996)
[11]K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. Mcmahon, W. F. Dinatale, and T. M. Lyszczarz, Appl. Phys. Lett. 67 (1995) 3844
[12]S. Matsuura, M. Tani, and K. Saki, Appl. Phys. Lett. 70 (1997) 559
[13]Q. Wu, and X.-C. Zhang, Appl. Phys. Lett., 67,3523, (1995)
[14]Q. Wu, and X.-C. Zhang, Appl. Phys. Lett., 68,1604, (1996)
[15]D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett 16, 42 (1991).
[16]N. Sarukura and Y. Ishida, Opt. Lett. 17, 61 (1992).
[17]L. Xu, G. Tempea, Ch. Spielmann, F. Krausz, A. Stingl, K. Ferencz, and S. Takano, Opt. Lett. 23, 789 (1998).
[18]S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 417 (1999).
[19]A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipocs, Appl. Phys. B 65, 175 (1990)
[20] G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, Opt. Lett 24, 528 (1999).
[21] N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, J. Appl. Phys. 84, 654 (1998).
[22] R. J. Ellingson and C. L. Tang, Opt. Lett. 17, 343 (1992).
[23] L. Esaki and R. Tsu, Appl. Phys. Lett., 22, 562, 1973
[24] P. Bhattacharya, A. C. Schaefer, and D. G. Steel, Properties of III-V quantum wells and superlattices. P-266, 1996
[25] S. Schmitt-Rink phys. Rev. B, 32, 6601(1985)
[26] M. Lindberg, S. W. Koch, J. Opt. Soc. Am. B, 5, 139, (1988)
[27] W. H. Knox et al , phys. Rev. Lett, 54, 1306 (1985)
[28] W. H. Knox, C. Hirlimann, D. A. B. Miller, J. Shah, D. S. Chemla, C. V. Shank, Phys. Rev. Lett, 56, 1191 (1986)
[29] J. T. Remillard, H. Wang, D. G. Steel, J. Oh, J. Pamulapati, P. K. Bhattacharya, Phys. Rev. Lett, 62, 2861 (1989)
[30]F. Ganikhanov, G. R. Lin, W. C. Chen, C. —S. Chang and C. L. Pan: Appl. Phys. Lett. 67 (1995) 3465.
[31] T. A. Liu, K. F. Huang, C. L. Pan, Z. Liu, S. Ono, H. Ohtake, and N. Sarukura, Jpn. J. Appl. Phys. 38, 1333 (1999)
[32] T. A. Liu, K. F. Huang, C. L. Pan, Z. Liu, H. Ohtake, and N. Sarukura, Jpn. J. Appl. Phys. 38, 1109 (1999)
[33]U. Keller, K. J. Weingarten, F. X. Kärtner, D Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au: IEEE J. Sel. Topics Quantum Electron. 2 (1996) 435.
[34]S. Tsuda, W. H. knox, S. T. Cundiff, W. Y. jan and J. E. Cunningham: IEEE J. Sel. Topics Quantum Electron. 2 (1996) 454.
[35]M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock and R. P. Leavitt: Optics Comm. 137 (1997) 55.
[36]M. Hofmann, K. Fröjdh, S.D. Brorson, and J. Mørk: IEEE Photon. Technol. Lett. 9 (1997) 622
[37]F. X. Kärtner, J. A. der. Au and U. Keller: IEEE J. Sel. Topics Quantum Electron. 4 (1998) 159.
[38]C. Knorr U. Wilhelm, V. Härle, D. Ottenwälder, F. Scholz and A. Hangleiter: Appl. Phys. Lett. 69 (1996) 4212.
[39] T. Akiyama, M. Tsuchiya and T. Kamiya: Jpn. J. Appl. Phys. 36 (1997) 2701.
[40] A. Tackeuchi, Y. Nishikawa, S. Muto and O. Wada: Optoelectronics-devices and technologies. 10 (1995) 561
[41] M. Nisoli, S. D. Silvestri, D. Campi and C. Coriasso: J. Opt. Sol, Am. B 14 (1997) 1870.
[42]D. L. Smith and C. Mailhiot, Phys. Rev. Lett, 58 (1987) 1264.
[43]Y. -G. Zhao, Y. —H. Zou, X. —L. Wang, Y. —D. Qin, R. A. Masut and M. Beaudoin: J. Appl. Phys. 83 (1998) 4430.
[44]M. Livingstone, I. Galbraith, and B. S. Wherrett: Appl. Phys. Lett. 65, (1994) 2771.
[45]A. N. Cartwrighle, D. S. McCallum, T. F. Boggess, A. L. Smirl, T. S. Moise, L. J. Guido, R. C. Barker, and B. S. Wherrett:J. Appl. Phys. 73 (1993) 7767.
[46] P. W. Juodawlkis, D. T. Mclnturff and S. E. Ralph: Appl. Phys. Lett. 69 (1996) 4062.
[47] D. H. Auston, in Semiconductors and Semimetals, R.B. Marcuse, Ed. San Diego, CA: Academic, 1990, vol. 28, pp. 85—130.
[48] M. B. Johnson, T. C. McGill, and N. G. Paulter, Appl. Phys. Lett., vol. 54, pp. 2424—2426, 1989.
[49] A. Esser, W. Kutt, M. Strahnen, G. Maidorn, and H. Kurz, Appl. Surf. Sci., vol. 46, pp. 446—450, 1990.
[50] T. Pfeiffer, J. Kuhl, E. O. Gobel, and L. Palmetshofer, J. Appl. Phys., vol. 62, pp. 1850—1855, 1987.
[51] F. E. Donaey, D. Grischkowsky, and C.-C. Chi, Appl. Phys. Lett., vol. 50,
pp. 460—462, 1987.
[52] F. W. Smith, H. Q. Le, V. Dradiuk, M. A. Hollis, A. R. Calawa, S.Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang,Appl. Phys. Lett., vol. 54, pp. 890—892, 1989.
[53] A. Claverie, F. Namavar, and Z. Liliental-Weber, Appl.Phys. Lett., vol. 62, pp. 1271—1273, 1993.
[54] G.-R. Lin, W.-C. Chen, C.-S. Chang, and C.-L. Pan, Appl. Phys. Lett., vol. 65, pp. 3272—3274, 1994.
[55] H. Fujioka, J. Krueger, A. Prasad, X. Liu, E. R. Weber, and A. K. Verma,J. Appl. Phys., vol. 78, pp. 1470—1476, 1995.
[56] H. H. Wang, J. F. Whitaker, H. Fujioka, and Z. Lilienthal-Weber, in OSA Technical DigestSeries. Washington, DC: Opt. Soc. Amer., 1995, vol. 13, pp. 32—34.
[57] F. Ganikhanov, G.-R. Lin, W.-C. Chen, C.-S. Chang, and C.-L. Pan, Appl.Phys. Lett., vol. 67, pp. 3465—3467, 1995.
[58] A. Krotkus, S. Marcinkevicius, J. Jasinski, M. Kaminska, H. H. Tan, and
C. Jagadish, Appl. Phys. Lett., vol. 66, pp. 3304—3306,1995.
[59] X. -C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley and M. Weiner: Appl. Phys. Lett. 62 (1993) 2003.
[60] N. Sarukura, H. Ohtake, S. Izumida and Z. Liu, J. Appl. Phys, 84, (1998) 654.
[61] N. Sarukura, H. Ohtake, Z. Liu, T. Itatani, T. Sugaya, T. Nakagawa and Y. Sugiyama: Jpn. J. Appl. Phys. 37 (1998) 125.
[62] G. Mourou, C. V. Stancampiano, and D. Blumenthal, Appl. Phys. Lett., 38, 470(1981)
[63] R. Heidemann, Th.Pfeiffer, and D. Jäger, Electron Lerr. 19, 316 (1983)
[64] B.I. Greene, P.N. Saeta, J. F. Federici, D. R. Dykaar, R. R. Jones, and P. H. Bucksbaum, Appl. Phys. Lett. 59, 893 (1991).
[65] B. B. Hu, J. T. Darrow, X. —C. Zhang, and D. H. Auston, Appl. Phys. Lett. 56, 886 (1990)
[66] J. T. Darrow, X. —C. Zhang, and D. H. Auston, Appl. Phys. Lett. 58, 25 (1991).
[67] D. You, R. R. Jones, P. H. Bucksbaum, and D. R. Dykaar, Opt. Lett. 18, 290,(1993)
[68] P. K. Benicewicz, J. P. Roberts, and S. J. Taylor, J. Opt. Soc. Am. B, 11, 2533, (1994)
[69] M. van Exter, Ch. Fattinger, and D. Grischkowsky, Appl. Phys. Lett. 55, 337 (1989)
[70] D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B, 7, 2006, (1990)
[71] A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Wiidall, M. R. Melloch, and N. Otsuka, Appl. Phys. Lett. 58, 1512 (1991)
[72] H. Harde and D. Grischkowsky, J. Opt. Soc. Am. B, 8, 1642, (1991)
[73] M. Tani, K. Sakai, H. Abe, S. Nakashima, H. Harima, M. Hangyo, Y. Tokuda, K. Kanamoto, Y. Abe, and N. Tsukaka, Jpn. J. Appl. Phys. 33 (1994) 4807.
[74] D. C. Look, Thin Solid Films 231, 61, (1993)
[75] S. Kono, M. Tani, P. Gu, and D. Sakai, Appl. Phys. Lett. 77, 4104 (2000)
[76] M. C. Nuss, P. C. M. Planken, I. Brener, H. G. Roskos, M. S. C. Luo and S. L. Chuang: Appl. Phys. B. 58 (1994) 249.
[77] H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. S. Rink and K. Köhler: Phys. Rev. Lett. 68 (1992) 2216.
[78]M. S. C. Luo, S. L. Chuang, P. C. M. Planken, I. Brener, H. G. Roskos and M. C. Nuss: IEEE. J. Quantum. Electron. 30 (1994) 1478.
[79] M. Kusuda, S. Tokai, Y. Hokomoto, Y. Kadoya and M. Yamanishi: Physica B. 272 (1999) 467.
[80] P. C. M. Planken, M. C. Nuss, I. Brener, K. W. Goossen, M. S. C. Luo, S. L. Chuang, and L. Pfeiffer: Phys. Rev. Lett. 69 (1992) 3800.
[81] N. Sekine, K. Hirakawa and Y. Arakawa: Jpn. J. Appl. Phys. 37 (1998) 1643.
[82] R. Martini, G. Klose, H. G. Roskos, H. Kurz, H. T. Grahn and R. Hey: Phys. Rev. B. 54 (1996) 14325.
[83] C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz and K. Köhler: Phys. Rev. Lett. 70 (1993) 3319.
[84] B.B. Hu and M.C. Nuss: Opt. Lett. 20, 1716,(1995)
chap2
1)D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett 16, 42 (1991).
2)N. Sarukura and Y. Ishida, Opt. Lett. 17, 61 (1992).
3)L. Xu, G. Tempea, Ch. Spielmann, F. Krausz, A. Stingl, K. Ferencz, and S. Takano, Opt. Lett. 23, 789 (1998).
4)S. H. Cho, B. E. Bouma, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 417 (1999).
5)A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipocs, Appl. Phys. B 65, 175 (1990)
6)G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, Opt. Lett 24, 528 (1999).
7)N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, J. Appl. Phys. 84, 654 (1998).
8)R. J. Ellingson and C. L. Tang, Opt. Lett. 17, 343 (1992).
9)Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, Appl. Phys. Lett. 74, 3622 (1999).
10)S. Tsuda, W. H. Knox, S. T. Cundiff, Appl. Phys. Lett. 69, 1538 (1996).
11)J. M. Shieh, T. C. Huang, K. F. Huang, C. L. Wang, and C. L. Pan, Opt. Commun. 156, 53 (1998).
12)J. C. Kuo and C. L. Pan, Opt. Lett. 15, 1297 (1990).
13)J. Goodberlet, J. Wang, J. G. Fujimoto, and P. A. Schulz, Opt. Lett. 15, 1300 (1990).
chap3:
1)F. Ganikhanov, G. R. Lin, W. C. Chen, C. —S. Chang and C. L. Pan: Appl. Phys. Lett. 67 (1995) 3465.
2)T. A. Liu, K. F. Huang, C. L. Pan, Z. Liu, S. Ono, H. Ohtake, and N. Sarukura, Jpn. J. Appl. Phys. 38, 1333 (1999)
3)T. A. Liu, K. F. Huang, C. L. Pan, Z. Liu, H. Ohtake, and N. Sarukura, Jpn. J. Appl. Phys. 38, 1109 (1999)
4)U. Keller, K. J. Weingarten, F. X. Kärtner, D Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au: IEEE J. Sel. Topics Quantum Electron. 2 (1996) 435.
5)S. Tsuda, W. H. knox, S. T. Cundiff, W. Y. jan and J. E. Cunningham: IEEE J. Sel. Topics Quantum Electron. 2 (1996) 454.
6)M. J. Hayduk, S. T. Johns, M. F. Krol, C. R. Pollock and R. P. Leavitt: Optics Comm. 137 (1997) 55.
7)M. Hofmann, K. Fröjdh, S.D. Brorson, and J. Mørk: IEEE Photon. Technol. Lett. 9 (1997) 622
8)F. X. Kärtner, J. A. der. Au and U. Keller: IEEE J. Sel. Topics Quantum Electron. 4 (1998) 159.
9)C. Knorr U. Wilhelm, V. Härle, D. Ottenwälder, F. Scholz and A. Hangleiter: Appl. Phys. Lett. 69 (1996) 4212.
10) T. Akiyama, M. Tsuchiya and T. Kamiya: Jpn. J. Appl. Phys. 36 (1997) 2701.
11) A. Tackeuchi, Y. Nishikawa, S. Muto and O. Wada: Optoelectronics-devices and technologies. 10 (1995) 561
12) M. Nisoli, S. D. Silvestri, D. Campi and C. Coriasso: J. Opt. Sol, Am. B 14 (1997) 1870.
13)D. L. Smith and C. Mailhiot, Phys. Rev. Lett, 58 (1987) 1264.
14)Y. -G. Zhao, Y. —H. Zou, X. —L. Wang, Y. —D. Qin, R. A. Masut and M. Beaudoin: J. Appl. Phys. 83 (1998) 4430.
15)M. Livingstone, I. Galbraith, and B. S. Wherrett: Appl. Phys. Lett. 65, (1994) 2771.
16)A. N. Cartwrighle, D. S. McCallum, T. F. Boggess, A. L. Smirl, T. S. Moise, L. J. Guido, R. C. Barker, and B. S. Wherrett:J. Appl. Phys. 73 (1993) 7767.
17)Jia-Min Shieh, T. C. Huang, K. F. Huang, Chi-Luen Wang, Ci-Ling Pan: Opt. Communications. 156 (1998) 53.
18)Y. Chang, R. Leonelli, R. Maciejko and A. S. Thorpe, Appl. Phys. Lett. 76 (2000) 921.
19)P. W. Juodawlkis, D. T. Mclnturff and S. E. Ralph: Appl. Phys. Lett. 69 (1996) 4062.
20)B. C. Tousley, S. M. Mehta, A. I. Lobad, P. J. Rodney, P. M. Fauchet and P. Cooke: J. of Electronic Materials. 22 (1993) 1477.
21)D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burrus: Appl. Phys. Lett. 45 (1984) 13.
22)B. R. Bennett, R. A. Soref and J. A. D. Alamo: IEEE J. Quantum Electron: 26 (1990) 113.
23)K. Ogawa, Y. Matsui, T. Itatani and K. Ouchi: Appl. Phys. Lett. 73 (1998) 297.
24)J.-K. Wang, T.-L. Chiu, C.-H. Chi, and C.-K. Sun: J. Opt. Sol, Am. B 16 (1999) 651.
25) R. Trebino and D.J. Kane, J. Opt. Sol, Am. A 10 (1993) 1101
26) J. Tignon, M. V. Marquezini, T. Hasche, and D.S. Chemla: IEEE J. Quantum Electron: 35 (1999) 510.
chap4:
1)D. H. Auston: Appl. Phys. Lett. 43 (1983) 713.
2)X. -C. Zhang and D. H. Auston: J. Appl. Phys. 71 (1992) 326.
3)P. C. M. Planken, M. C. Nuss, W. H. Knox, D. A. B. Miller and K. W. Goossen: Appl. Phys. Lett. 61 (1992) 2009.
4)I. Brener, D. Dykaar, A. Frommer, L. N. Pfeiffer, J. Lopata, J. Wynn, K. West and M. C. Nuss: Opt. Lett. 21 (1996) 1924.
5)D. M. Mittleman, S. Hunsche, L. Boivin and M. C. Nuss: Opt. Lett. 22 (1997) 904.
6)N. Sarukura, H. Ohtake, Z. Liu, S. Izumida, T. Itatani, T. Sugaya, T. Nakagawa and Y. Sugiyama: Jpn. J. Appl. Phys. 36 (1997) 560.
7)N. Sarukura, H. Ohtake, Z. Liu, T. Itatani, T. Sugaya, T. Nakagawa and Y. Sugiyama: Jpn. J. Appl. Phys. 37 (1998) 125.
8)Jia-Min Shieh, T. C. Huang, K. F. Huang, Chi-Luen Wang, Ci-Ling Pan: Opt. Communications. 156 (1998) 53.
9)X. -C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley and M. Weiner: Appl. Phys. Lett. 62 (1993) 2003.
10)N. Sarukura, H. Ohtake, S. Izumida and Z. Liu, J. Appl. Phys, 84, (1998) 654.
11)S. Izumida, S. Ono, Z. Liu, H. Ohtake, and N. Sarukura: had been accepted for publication in Appl. Phys. Lett. July 26 1999 issue.
12)Jia-Min Shieh, S. C. Liu, and Ci-Ling Pan: J. Opt. Soc. Am. B 15, (1998) 1802.
13)F. X. Kartner and U. Keller, Opt. Lett. 20 (1995) 16.
14)Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, Appl. Phys. Lett. 74, 3622 (1999).
chap5:
1.X. -C. Zhang and D. H. Auston: J. Appl. Phys. 71 (1992) 326.
2.P. C. M. Planken, M. C. Nuss, W. H. Knox, D. A. B. Miller and K. W. Goossen: Appl. Phys. Lett. 61 (1992) 2009
3.S. G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders and A. J. Taylor, IEEEl. J. Quantum. Electron., vol. 35, pp. 1257 —1268, 1999.
4.M. Tani, S. Matsuura, K. Sakai, and S. Nakashima: Appl Opts 36 (1997) 7853
5.F. Ganikhanov, G. -R. Lin, and C. -L. Pan, Appl. Phys. Lett. 67 (1995) 3465
6.A. Claverie, F. Namavar, and Z. Liloental-Weber, Appl. Phys. Lett. 62, 1271 (1993)
7.G. -R. Lin, W. C. Chen, C. S. Chang and C. -L. Pan, Appl. Phys. Lett., 65, 3272, 1994.
8.H. H. Wang, P. Grenier, J. F. Whitaker, IEEE. J. Sel. tops .quantum elect.,2, 630, 1996
9.G. Rodriguez and A.J. Taylor, Opt. Lett., vol. 21, pp. 1046-1048, 1996.
10.P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B. 13, 2424, (1996)
11.Z. Pial, M. Tani and K. Sakai, Jpn. J. Appl. Phys. 39,96, (2000)
12.Q. Wu and X.-C. Zhang, IEEE J. Sel. Top. Quantum Electron. 2, 693 (1996)
13.H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu and X.-C. Zhang, J. Opt. Soc. Am. B. 15, 1795, (1998)
14.P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, J. Opt. Soc. Am. B. 11, 2533, (1994)
15.J. T. Darrow, Xi-Cheng Zhang, D. H. Auston, and J. D. Morse, IEEE J. Quantum Electron. 28, 1607 (1992)
16.P. K. Benicewicz and A.J. Taylor, Opt. Lett. 18, 1332(1993)
17.A.J. Taylor, P. K. Benicewicz and S.M. Young, Opt. Lett. 18, 1340(1993)
18.E. B. Brown, K. A. Mclntosh, K. B. Nichols, and C. L. Dennis, Appl. Phys. Lett. 66 (1995) 285
19.G.R. Lin, W.C. Chen, C.S. Chang, S.C.Chao, K.H. Wu, T.M. Hsu, W.C. Lee, C.L. Pan, IEEE J. Quantum. Electronics 34, 1740, (1998)
20.J. T. Darrow, Xi-Cheng Zhang and D. H. Auston, Appl. Phys. Lett. 58, 1271 (1991)
21.H. M. Heiliger, M. Vossebürger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, Appl. Phys. Lett. 69, 2903 (1996)
22.S. Verghese, K.A. McIntosh and E.R. Brown, Appl. Phys. Lett. 71, 2743 (1997)
23.S. Svechnikov, G. Goltsman, B. Voronov, P. Yagoubov, S. Cherednichenko, E. Gershenzon, V. Belitsky, H. Ekstrom, E. Kollberg, A. Semenov, Y. Gousev and K. Renk, IEEE T Appl Supercon 7, 3395(1997)
24.Y.P. Gousev, A.D. Semenov, R.S. Nebosis, E.V. Pechen, A.V. Varlashkin and K.F. Renk, Supercond SCI TECH 9, 779 (1996)
25.C. Ludwig and J. Kuhl: Appl. Phys. Lett. 69 (1996) 1194
chap6:
1)D. M. Mittleman, S. Hunsche, L. Boivin and M. C. Nuss: Opt. Lett. 22 (1997) 904.
2)D. H. Auston: Appl. Phys. Lett. 43 (1983) 713.
3)X. -C. Zhang and D. H. Auston: J. Appl. Phys. 71 (1992) 326.
4)P. C. M. Planken, M. C. Nuss, W. H. Knox, D. A. B. Miller and K. W. Goossen: Appl. Phys. Lett. 61 (1992) 2009.
5)I. Brener, D. Dykaar, A. Frommer, L. N. Pfeiffer, J. Lopata, J. Wynn, K. West and M. C. Nuss: Opt. Lett. 21 (1996) 1924.
6)T. A. Liu, K. F. Huang, C. L. Pan, Z. Liu, S. Ono, H. Ohtake and N. Sarukura: Jpn. J. Appl. Phys. 38 (1999) 1333.
7)Z. Liu, S. Ono, H. Ohtake, N. Sarukura, T. A. Liu, K. F. Huang and C. L. Pan: Jpn. J. Appl. Phys. 39 (1999) 366.
8)M. C. Nuss, P. C. M. Planken, I. Brener, H. G. Roskos, M. S. C. Luo and S. L. Chuang: Appl. Phys. B. 58 (1994) 249.
9)H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. S. Rink and K. Köhler: Phys. Rev. Lett. 68 (1992) 2216.
10)M. S. C. Luo, S. L. Chuang, P. C. M. Planken, I. Brener, H. G. Roskos and M. C. Nuss: IEEE. J. Quantum. Electron. 30 (1994) 1478.
11)M. Kusuda, S. Tokai, Y. Hokomoto, Y. Kadoya and M. Yamanishi: Physica B. 272 (1999) 467.
12)P. C. M. Planken, M. C. Nuss, I. Brener, K. W. Goossen, M. S. C. Luo, S. L. Chuang, and L. Pfeiffer: Phys. Rev. Lett. 69 (1992) 3800.
13)N. Sekine, K. Hirakawa and Y. Arakawa: Jpn. J. Appl. Phys. 37 (1998) 1643.
14)R. Martini, G. Klose, H. G. Roskos, H. Kurz, H. T. Grahn and R. Hey: Phys. Rev. B. 54 (1996) 14325.
15)C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz and K. Köhler: Phys. Rev. Lett. 70 (1993) 3319.
16)P. H. Bolivar, F. Wolter, A. Müller, H. G. Roskos, H. Kurz and K. Köhler: Phys. Rev. Lett. 78 (1997) 2232.
17)X. -C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley and M. Weiner: Appl. Phys. Lett. 62 (1993) 2003.
18)N. Sarukura, H. Ohtake, S. Izumida and Z. Liu: J. Appl. Phys, 84, (1998) 654.
19)N. Sarukura, H. Ohtake, Z. Liu, T. Itatani, T. Sugaya, T. Nakagawa and Y. Sugiyama: Jpn. J. Appl. Phys. 37 (1998) 125.
20)D. Some and A. V. Nurmikko: Phys. Rev. B. 50 (1994) 5783.
21)S. R. Andrews, P. G. Huggard, C. J. Shaw, J. A. Cluff, O. E. Raichev and R. Grey: Phys. Rev. B. 57 (1998) 9443.
22)D. L. Smith and C. Mailhiot: Phys. Rev. Lett, 58 (1987) 1264.
23)S. L. Chuang, S. S. Rink, B. I. Greene, P. N. Saeta and A. F. J. Levi, Phys. Rev. Lett, 68 (1992) 102.
24)C. Knorr, O.Gfrörer, V. Härle, F. Scholz and A. Hangleiter: Semicond. Sci. Technol. 10 (1995) 1484.
25)X. -C. Zhang, B. B. Hu, S. H. Xin and D. H. Auston: Appl. Phys. Lett. 57 (1990) 753.
[26] X. -C. Zhang, Y. Jin, K. Yang and L. J. Schowalter: Phys. Rev. Lett. 69 (1992) 2303.
[27] X. -C. Zhang, Y. Jin, B. B. Hu, X. Li and D. H. Auston: superlatt. microstruct. 12 (1992) 487
[28] W. H. Knox et al , phys. Rev. Lett, 54, 1306 (1985)
[29] X. -C. Zhang, Y. jin, L. E. Kingsley and M. Weiner: Appl. Phys. Lett. 62 (1993) 2477.
[30] C. Weiss, R. Wallenstein, and R. Beigang: Appl. Phys. Lett. 77 (2000) 4160.
[31] J. Shan, C. Weiss, R. Wallenstein, R. Beigang and T. F. Heinz: Opt. Lett. 26 (2001) 849.
[32] P. N. Saeta, B. I. Greene, S. L. Chuang: Appl. Phys. Lett. 63 (1993) 3482
[33] E. Garmire and A. Kost: Nonlinear Optics in Semiconductors II, p-71, 1999
[34] Y. Sekata, M. Yamanishi, Y. Yamaoka, S. Kodama, Y. Kan, and I. Suemune: Jpn. J. Appl. Phys. 29 (1990) 1973
[35] P. Bois, E. Rosencher, J. Nagle, E. Marinet, P. Boucaud, and F. H. Julien: Superlattices and Microstructures, 8, 369 (1990)
[36] P.C.M. Planken and M.C. Nuss: Ultrafast Phenomena VIII, p-489, 1992

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top