跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡世森
研究生(外文):Shih-Sen Chien ( Forest S.-S. Chien )
論文名稱:以掃描探針微影術及非等向性濕式蝕刻製作矽奈米結構
論文名稱(外文):Fabrication of Si Nanostructures by Scanning Probe Lithography and Anisotropic Wet Etching
指導教授:果尚志謝文峰謝文峰引用關係
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:92
中文關鍵詞:掃描探針顯微術掃描探針微影術奈米結構奈米微影非等向性濕式蝕刻靜電力顯微鏡掃描探針氧化光子晶體
外文關鍵詞:scanning probe microscopyscanning probe lithographynanostructurenanolithographyanisotropic wet etchingelectrostatic forve microscopescanning probe oxidationphotonic crystal
相關次數:
  • 被引用被引用:5
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:3
矽奈米結構具有特殊的光子性質元件,在光積體系統(photonic integrated circuits)扮演重要的角色。然而提供奈米等級的設備與裝置都極為昂貴,以致阻礙奈米光子元件在研究室中的開發。掃描探針微影術(scanning probe lithography)是一新興之技術,以臨近樣品表面的探針引致局部陽極氧化反應(掃描探針氧化反應,scanning probe oxidation),提供與先進微影技術可相媲美的解析度,且具備簡單性、普遍性與低成本等優點,被視為發展奈米元件的關鍵技術。此一研究的目的在開發一植基於掃描探針微影術的製作技術,可靠又能被研究單位負擔的,以從事原型奈米光子元件之研發。
我們成功地以掃描探針微影術在奈米尺度將氮化矽轉變氧化矽。掃描探針氧化反應之成長運動學(growth kinetics)遵守對數關係,而且成長速率對應於氧化矽高度呈指數衰減。我們發現氮化矽的掃描探針氧化反應只需很短的起始時間(onset time),造成它有極高的初始氧化速率。靜電力檢測(electrostatic force characterization)結果顯示有正電荷局限在探針引置之氧化矽之中,而且電荷的數量與氧化矽的高度呈線性關係。因此推論局限電荷造成氧化反應的活化能增加,亦即導致成長速率呈指數降低之原因。
藉由矽在氫氧化鉀(KOH)及四甲基銨氫氧化物(tetra-methyl ammonium hydroxide,TMAH)中的非等向性蝕刻,我們製作多種矽結構在不同之晶片(矽晶片、氮化矽成長之矽晶片(Si3N4-coated Si wafer)及SOI (silicon on insulator)),如100 nm線距之結構、正對比與負對比之結構、400 nm縱深結構。利用方格型的遮罩,被六個矽晶面包圍自我終止(self-limited)的六角形凹槽被製作在(110)矽晶片上。由六角形凹槽的形成,得知凹槽的形狀與方格之大小及方向有密切關係。我們認為以掃描探針微影術配合非等向性濕式蝕刻(anisotropic wet etching)是一種可在不同的矽晶片上製作平滑且均勻之矽奈米結構的方法,又具備低成本及可靠的特性。
我們成功地將掃描探針微影術與傳統光學微影術結合成一複合式多層微影技術,以實現光子元件所需求的微米與奈米結構。此一複合式微影技術配合非等向性濕式蝕刻可望成為迅速開發奈米光子元件原型的可行方法。基於此一研究所建立之技術,我們提出一在SOI上製作一維光子晶體(photonic crystal)的製程。

Si nanostructures offering unique photonic properties are significant to the applications of photonic integrated circuits. However, the extremely high expenses of the facilities and utilities to provide nanometer scale features have blocked the development of nano photonic devices in research laboratories. Scanning probe lithography (SPL), employing a proximal probe to induce local anodic oxidation (so-called scanning probe oxidation), can provide nanometer lateral resolutions comparable to most advanced lithography and exhibit the distinction of simplicity, generality and low cost. The aim of this study is to develop a reliable, yet affordable technique for rapid prototyping of nano photonic devices in laboratories based on SPL.
We demonstrated the conversion of Si3N4 to SiOx at the nanometer scale can be performed by SPL. The growth kinetics of scanning probe oxidation on Si3N4 obeys the logarithmic relationship and growth rate exponentially decays with respect to oxide height. We found scanning probe oxidation of Si3N4 has a short onset time, which accounts for its extremely high initial oxidation rate. Electrostatic force characterization indicates that charges, trapped in probe-induced oxide, are positive and linearly increase with the oxide height. We suggest that effective activation energy of oxidation increases with the amount of trapped charges, and therefore the exponential decay of growth rate can be derived.
By means of Si anisotropic etching in KOH and tetra-methyl ammonium hydroxide (TMAH) etchants, we produced a variety of Si structures with the oxide patterns on either Si or Si3N4 as masks. They include structures with a pitch of 100 nm, structures of positive and negative contrast, and features height greater than 400 nm, produced on bare silicon, Si3N4-coated silicon and silicon-on-insulator (SOI) wafers. Evolution of hexagonal pits on two-dimensional grid structures is shown to depend on the pattern spacing and orientation with respect to silicon crystal directions. We conclude the process of SPL in combination with anisotropic wet etching (KOH or TMAH) is a low-cost and reliable method to produce smooth and uniform silicon nanostructures on different Si substrates.
We have succeeded in the combination of SPL with traditional optical lithography as a mixed, multilevel patterning method for realizing micrometer- and nanometer-scale feature sizes, as required for photonic device designs. We believe the cooperating method of the combined lithography and anisotropic wet etching is a promising approach for rapid prototyping of functional nano photonic devices. Based on the techniques developed in this study, a process to fabricate 1-D photonic band gap on SOI is proposed.

摘 要 I
Abstract III
List of Figures VII
List of Tables IX
Chapter 1 INTRODUCTION 1
1.1 Silicon structures for Nano Photonic Devices 1
1.2 Trend in Semiconductor Manufacturing Technology 2
1.3 Scanning Probe Lithography 3
1.4 Applications of SPL 5
1.5 Achievements of this study 6
References 9
Chapter 2 ATOMIC FORCE and ELECTROSTATIC FORCE MICROSCOPY 13
2.1 Historical Background 13
2.2 Atomic Force Microscopy 15
2.2.1 Contact Mode 17
2.2.2 Dynamic Mode 18
2.3 Electrostatic Force Microscopy 20
2.4 Instruments 22
2.5 Cantilevers 25
References 28
Chapter 3 SCANNING PROBE LITHOGRAPHY on Si3N4 30
3.1 Scanning Probe oxidation by AFM 30
3.2 Growth Kinetics of Scanning Probe oxidation on Silicon 31
3.3 Probe-Induced Oxidation on Si3N4 34
3.3.1 SAM/S Analysis 37
3.3.2 Growth Kinetics of Scanning Probe Oxidation on Si3N4 42
3.4 Charges Trapped in oxide 46
3.4.1 Contrast Reversal 46
3.4.2 Electrostatic Force Microscopy Analysis 47
3.5 Discussion 52
3.5.1 Comparison with plasma oxidation 52
3.5.2 Charge Trapping during Oxidation 52
3.5.3 Scanning Probe Oxidation Mechanism of Si3N4 53
References 55
Chapter 4 Fabrication of Silicon Nanostructures 60
4.1 Anisotropic Wet Etching of Silicon 60
4.1.1 Potassium Hydroxide (KOH) Etching 62
4.1.2 Tetra-Methyl Ammonium Hydroxide (TMAH) 64
4.1.3 Experiment 65
4.2 Nanostructures on Si(110) 66
4.2.1 1-D Grating 66
4.2.2 2-D Grating 72
4.3 Nanostructures on Si(100) 78
4.3.1 Bare Silicon Wafer 78
4.3.2 Silicon on Insulator 81
4.4 Silicon Nitride 82
4.4.1 V-Grooves 83
4.4.2 High-density Pit Array 84
4.4.3 Vertical Trenches 85
4.5 Combined Optical and Scanning Probe Lithography 86
4.6 Application to Photonic Band Gap 88
References 90
Chapter 5 CONCLUSIONS 93

1. Materials and devices for silicon-based optoelectronics, edited by A. Polman, S. Coffa and R. Soref (Material Research Society, Warrendale, 1998).
2. N. Maluf, An introduction to microelectromechanical systems engineering (Artech House, Boston, 2000).
3. D. J. DiMaria, J. R. Kirtley, E. J. Pakulis, D. W. Dong, T. S. Kuan, F. L. Pesavento, T. N. Theis and J. A. Cutro, “Electroluminescence studies on silicon dioxide films containing tiny silicon islands,” J. Appl. Phys. 56, 401 (1984).
4. T. Shimizu-Iwayama, Y. Terao, A. Kamiya, M Takeda, S. Nakao and K. Saitoh, “Visible photoluminescence from silicon nanocrystals formed in silicon dioxide by ion implantation and thermal processing,” Thin Solid Films 276, 104 (1996).
5. J. Schmidtchen, A. Splett, B. Schuppert, K. Pertermann and G. Burbach, Electron. Lett. 27, 1486 (1991).
6. V. P. Kesan, P. G. May, E. Bassous, S. S. Iyer, IEDM Tech. Dig., 637 (1990).
7. J. D. Joannopoulos, R. D. Meade amd J. N. Winn, Photonic Crystals Molding the Flow of Light (Princeton University Press, Princeton, 1995).
8. J .S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
9. T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, and A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 m in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734 (1999).
10. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022 (1992).
11. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19, 919 (1994).
12. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556 (1998).
13. ULSI Technology, edited by C. Y. Chang and S. M. Sze (McGraw-Hill, New York , 1996).
14. M. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, 1997).
15. Scanning probe microscopy: analytical methods, edited by R. Wiesendanger (Springer-Verlag, Berlin, 1998).
16. J. A. Dagata, “Device fabrication by scanned probe oxidation,” Science 270, 1625 (1995).
17. E. S. Snow, P. M. Campbell and F. K. Perkins, “Nanofabrication with proximal probes,” Proc. IEEE 85, 601 (1997).
18. H. T. Soh, K. W. Guarini and C. F. Quate, Scanning probe lithography (Kluwer Academic Publishers, Boston, 2001).
19. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air,” Appl. Phys. Lett. 56, 2001 (1990).
20. E. S. Snow, P. M. Campbell, and P. J. McMarr, “Fabrication of silicon nanostructures with a scanning tunneling microscope,” Appl. Phys. Lett. 63, 749 (1993).
21. H. J. Kreuzer, “Physics and chemistry in high electric fields,” in Atomic and Nanometer-Scale Modification of Materials: Fundamentals and Applications, Ed: Ph. Avouris, NATO ASI Series, Series E, Applied Science 239, 75 (Boston: Kluwer Academic Pub., 1993).
22. H. C. Day and D. R. Allee, “Selective area oxidation of silicon with a scanning force microscope,” Appl. Phys. Lett. 62, 2691 (1993).
23. E. S. Snow and P. M. Campbell, “Fabrication of Si nanostructures with an atomic force microscope,” Appl. Phys. Lett. 64, 1932 (1994).
24. Ph. Avouris, T. Hertel, and R. Martel, “Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication,” Appl. Phys. Lett. 71, 285 (1997).
25. T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, and L. Ley, “Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope: Doping dependence and kinetics,” Appl. Phys. Lett. 67, 3144 (1995).
26. J. A. Dagata, F. Perez-Murano, G. Abadal, K. Morimoto, T. Inoue, J. Itoh, and H. Yokoyama, “Predictive model for scanned probe oxidation kinetics,“ Appl. Phys. Lett. 76, 2710 (2000).
27. H. H. Uhlig, “Initial oxidation rate of metals and the logarithmic equation,” Acta Metall. 4, 541 (1956).
28. J. A. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, “Understanding scanned probe oxidation of silicon,” Appl. Phys. Lett. 73, 271 (1998); J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, “Role of space charge in scanned probe oxidation,” J. Appl. Phys. 84, 6891 (1998).
29. H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara, “Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: A humidity effect on nanolithography,” Appl. Phys. Lett. 63, 1288 (1993).
30. H. J. Song, M. J. Rack, K. Abugharbieh, S. Y. Lee, V. Khan, D. K. Ferry and D. R. Allee, “25 nm chromium oxide lines formed by scanning tunneling lithography in air,” J. Vac. Sci. Tech. B12, 3720 (1994).
31. E. S. Snow, D. Park and P. M. Campbell, “Single-atom point contact devices fabricated with an atomic force microscope,” Appl. Phys. Lett. 69, 269 (1996).
32. S. Gwo, C.-L. Yeh, P.-F. Chen, Y.-C. Chou, T. T. Chen, T.-S. Chao, S.-F. Hu, and T.-Y. Huang, “Local electric-field-induced oxidation of titanium nitride films” Appl. Phys. Lett. 74, 1090 (1999).
33. H. C. Day and D. R. Allee, “Selective area oxidation of Si3N4 with an ambient scanning tunneling microscope,” Nanotechnology 7, 106 (1996).
34. S. C. Minne, H. T. Soh, Ph. Flueckiger, and C. F. Quate, “Fabrication of 0.1 m metal oxide semiconductor field-effect transistors with atomic force microscope,” Appl. Phys. Lett. 66, 703 (1995).
35. P. M. Campbell, E. S. Snow, and P. J. McMarr, “Fabrication of nanometer-scale side-gated silicon field effect transistors with an atomic force microscope,” Appl. Phys. Lett. 66, 1388 (1995).
36. K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian, and J. S. Harris, “Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system,” Appl. Phys. Lett. 68, 34 (1996).
37. R. García, M. Calleja, and H. Rohrer, “Patterning of silicon surfaces with noncontact mode atomic force microscopy: Filed-induced formation of nanometer-size water bridges,” J. Appl. Phys. 86, 1898 (1999).
38. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, and C. F. Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566 (1999).
39. R. W. Cohn, S. F. Lyuksyutov, K. M. Walsh, and M. M. Crain, “Nanolithography considerations for multi-passband grating filters,” Opt. Rev. 6, 345 (1999).
40. E. S. Snow, W. H. Juan, S. W. Pang, and P. M. Campbell, “Si nanostructures fabricated by anodic oxidation with an atomic force microscope and etching with an electron cyclotron resonance source,” Appl. Phys. Lett. 66, 1729 (1995).
41. S. A. Campbell and H. J Lewerenz, ed., Semiconductor micromachining Vol. 2 (John Wiley & Sons, Chichester, 1998).
42. F. S.-S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, S. Gwo, and W.-F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching,” Appl. Phys. Lett. 75, 2429 (1999).
43. F. S.-S. Chien, Y. C. Chou, T. T. Chen W.-F. Hsieh, T.-S. Chao, and S. Gwo, “Nano-oxidation of silicon nitride films with an atomic force microscope: Chemical mapping, kinetics, and applications,” J. Appl. Phys. 89, 2465 (2001).
44. S. Sharma, M. K. Sunkara, M. M. Crain, S. F. Lyuksyutov, S. A. Harfenist, K. M. Walsh and R. W. Cohn, “Selective plasma nitridation and contrast reversed etching of silicon,” J. Vac. Sci. Technol. B19, 1743 (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top