(3.238.186.43) 您好!臺灣時間:2021/02/28 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳承發
研究生(外文):Cheng-Fa Chen
論文名稱:SOI-AWG元件之設計與製作
論文名稱(外文):Design and Fabrication of SOI -AWG Devices
指導教授:祁 甡黃鼎偉
指導教授(外文):Sien ChiDing-Wei Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:85
中文關鍵詞:陣列波導光柵絕緣層上矽晶高密度分波多工器活性離子蝕刻法
外文關鍵詞:AWGSOI(Silicon-on-Insulator)DWDMReactive Ion Etching
相關次數:
  • 被引用被引用:4
  • 點閱點閱:364
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:1
隨著網際網路的盛行造成頻寬的需求,而頻寬的大量需求促進技術由原本單波長訊號光源朝多個波長訊號演進。高密度分波多工系統使原本傳輸容量的方式改變,得以快速提昇傳輸容量,使頻寬的容量因此以倍數激增。高密度分波多工/解多工器三種濾波技術,其中以陣列波導光柵最容易達到多波道數與窄頻道間距的功能,所以本論文以絕緣層矽晶的光波導結構來設計和製作此陣列波導光柵元件。在本論文中,簡述三種高密度分波多工/解多工器濾波技術的工作原理和優缺點以及陣列波導光柵的基本特性分析,並利用可做3D運算的光波導數值模擬軟體BeamPROP輔助設計模擬元件的結果。在元件設計上,利用元件輸出入波導的寬度改變成錐狀波導結構的方式可降低耦合損耗。在元件製程上,我們製作8個波道數、頻道間距為0.8nm(100GHz)的SOI-AWG元件。由實驗結果驗證在元件線寬6.3μm的脊狀波導模態分佈有單模模態與理論模擬的是最吻合的,但在元件損耗與理論模擬有些微差距,最後我們針對元件損耗原因來分析和探討,發現元件的損耗主要是因製程上蝕刻元件表面側壁的粗糙度過大所引起的,如能對製程上來改善使元件表面側壁更平整,其元件的特性會更有某一程度上的提昇。
Dense wavelength division multiplexing (DWDM) technology promises transmission capacity and flexibility in next generation broad-band optical fiber telecommunication networks. In this paper we present our design and fabrication results of array waveguide grating (AWG) devices based on the Silicon-On-Insulator (SOI) fabrication technology, Compared to other fabrication technologies like the Silica-on-Silcon technology,the SOI technology has the advantages of low-cost and monolithic integratability. SOI is potential for making monolithic multi-wavelength optical receiver system including the wavelength demultiplexer, photodetectors, and electronic circuitry. We use the beam propagation method (BPM) to simulate and design 8-channel gaussian-type SOI-based AWG devices. We have successfully reduced the singlemode fiber coupling loss of AWG by using a simple laterlly tapered spotsize converter. We obtains the coupling loss was reduced about 1dB. To achieve a flattened passband, we design a structure with parabolic waveguide horns bwtween an input waveguide and an input slab waveguide. In fabrication, we have fabricated an SOI-based 100GHz-spaced 8-channel AWG demultiplexer on a 4-in wafer. The output near-field image of the single mode at width=6.3μm on the SOI rib waveguide was measure. Finally, we found the main origin of AWG loss is the interface sidewalls roughness, which is caused during the rib waveguide etching .
中文摘要……………………………………………………………………i
英文摘要……………………………………………………………………ii
誌謝…………………………………………………………………………iii
目錄…………………………………………………………………………iv
表目錄………………………………………………………………………v
圖目錄………………………………………………………………………vi
第一章 緒論…………………………………………………………………1
第二章 AWG平面光波導元件理論與模擬……………………………………6
2.1 AWG元件工作原理………………………………………………………6
2.2 AWG基本特性分析………………………………………………………7
2.3 幾何結構分析…………………………………………………………11
2.4 AWG元件設計模擬………………………………………………………13
2.4.1設計SOI波導結構……………………………………………………13
2.4.2 耦合損失……………………………………………………………16
2.4.3 彎曲損耗……………………………………………………………17
2.4.4 其他損耗……………………………………………………………18
2.4.5 設計不同特性的AWG平面光波導元件………………………………18
2.4.5.1 穿透頻譜為高斯分佈的AWG……………………………………18
2.4.5.2 穿透頻譜為平坦化分佈的AWG…………………………………19
第三章 AWG平面光波導元件製程…………………………………………48
3.1 SOI晶圓製程技術………………………………………………………48
3.2 製程光罩的設計………………………………………………………49
3.3 元件製作流程…………………………………………………………51
3.4 製程步驟的說明………………………………………………………54
第四章 元件特性量測與分析………………………………………………67
4.1元件表面輪廓的量測……………………………………………………67
4.2元件特性量測……………………………………………………………68
4.2.1 波導模態分佈的量測………………………………………………68
4.2.2 波導損耗的量測……………………………………………………69
4.2.3 分析與討論…………………………………………………………69
4.3 製程誤差………………………………………………………………70
第五章 結論與展望…………………………………………………………82
參考文獻………………………………………………………………………83
[1] M. A. Scobey and D. E. Spock, “Passive DWDM components using MicroPlasma optical interference filters,” OFC’96 Technical Digest, pp. 242-243, 1996.
[2] C. Dragone, “An NN optical multiplexer using a planar arrangement of two star couplers.” IEEE Photon. Technol. Lett., vol. 3, pp. 812-815, 1991.
[3] H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, ”Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett., vol. 26, no. 2, pp. 87-88, 1990.
[4] M. Zirngibl, C. Dragone, and C. H. Joyner, “Demonstration of a 1515 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett., vol. 4, pp. 1250-1253, Nov. 1992.
[5] H. Bissessur, F. Gaborit, B. Martin, P. Pagnod-Rossiaux, J.-L. Peyre, and M. Renaud, “16 channel phased array wavelength demultiplexer on InP with low polarization sensitivity,” Electron. Lett., vol. 30, no. 4, pp. 336-337, 1994.
[6] Y. Hida, Y. Inoue, and S. Imamura, “Polymeric arrayed-waveguide grating multiplexer oprating around 1.3mm,” Electron. Lett., vol. 30, no. 12, pp. 959-960, 1994.
[7] H. Okayama and M. Kawahara, “Waveguide array grating wavelength demultiplexer on LiNbO3,” in Tech. Dig. Integrated Photonics Res. Conf., 1995, pp. 296-298, paper ISaB3-1.
[8] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “59 Integrated Optical Star Coupler in Silicon-on-Insulator Technology,” IEEE Photon. Technol. Lett., vol. 8, no. 6, pp. 794-796, 1996.
[9] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional coupler in silicon-on-insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097-2098, 1995.
[10] A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide circuits for fiber optic sensors,” in Proc. SPIE, Distributed and Multiplexed Fiber Optic Sensors III, 1993, vol. 2071, pp. 190-196.
[11] A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol., vol. 12, pp. 1771-1776, Oct. 1994.
[12] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Guided-wave optical circuits in silicon-on-insulator technology,” in Tech. Dig. Integrated Photonics Res. Conf., 1996, pp. 273-277, paper ITuB4-1.
[13] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. QE-27, pp. 1971-1974, 1986.
[14] K. Okamoto, “Fundamentals of Optical Waveguides”. New York: Academic, pp. 341-354, 2000.
[15] A. Kaneko, T. goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and Applications of Silica-Based Planar Lightwave Circuits,” IEEE J. Selected Topics in Quantum Electron., vol. 5, no. 5, pp. 1227-1235, 1999.
[16] Meint K. Smit, and Cor van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Selected Topics in Quantum Electron., vol. 2, no. 2, pp. 236-250, 1996.
[17] Y. Hibino, “An array of photonic filtering advantages: arrayed-waveguide grating multi/demultiplexers for photonic networks,” IEEE Circuits and Devices Magazine., vol. 16, pp. 21-27, 2000.
[18] M. C. Hutley, “Diffraction Grating”. New York: Academic, 1982.
[19] BeamPROP Version 4.0, Rsoft, Inc, 2000.
[20] Xiao Hong, “Introduction to semiconductor manufacturing technology,” Prentice Hall, 2001.
[21] U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm Waveguide Losses in Single-mode SOI Rib Waveguides,” IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 647-648, 1996.
[22] T. Mizuno, T. Kitoh, T. Saida, Y. Inoue, M. Itoh, T. Shibata, Y. Hibino and Y. Hida, “Low-loss 1.5%- arrayed waveguide grating with narrow laterally tapered spotsize converter,” Electron. Lett., vol. 37, no. 24, pp. 1452-1454, 2001.
[23] M. Itoh, T. Saida, Y. Hida, M. Ishii, Y. Inoue, Y. Hibino and A. Sugita, “Large reduction of singlemode-fiber coupling loss in 1.5%  planar lightwave circuits using spot-size converters,” Electron. Lett., vol. 38, no. 2, pp. 72-74, 2002.
[24] E.C.M. Pennings, G.H. Manhoudt, M.K. Smit, “Low-loss bends in planar optical ridge waveguides,” Electron. Lett., vol. 24, no. 16, pp. 998-999, 1988.
[25] S. Sekine, K. Shuto, S. Suzuki, “Low-loss, high-, single-mode channel waveguides for high-density integrated optical devices,” Electron. Lett., vol. 25, no. 23, pp. 1573-1574, 1989.
[26] K. Okamoto, K. Moriwaki, and S. Suzuki, “Fabrication of 6464 arrayed-waveguide grating multiplexer on silicon,” Electron. Lett., vol. 31, no. 3, pp. 184-186, 1995.
[27] K. Okamoto and A. Sugita, “Flat spectral response arrayed waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett., vol. 31, pp. 1661-1662, 1996.
[28] K. Okamoto and H. Yamada, ”Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett., vol. 20, pp. 43-45, 1995.
[29] M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, ”Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett., vol. 32, pp. 449-451, 1996.
[30] H. Uetsuka, et al., “Recent improvements in arrayed waveguide grating dense wavelength division multi/demultiplexer,” ECIO ’97 pp. 76-79, 1997.
[31] B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavar, “Optical waveguides in SIMOX Structrues,” IEEE Photon. Technol. Lett., vol. 3, pp. 19-21, 1991.
[32] J. Schmidtchen, A. Splett, B. Schuppert, K. Petermann, and G. Burbach, “Low-loss singlemode optical waveguides with large cross-section in silicon-on-insulator,” Electron. Lett., vol. 27, pp. 1496-1488, 1991.
[33] W. P. Maszara, G. Goetz, A. Caviglia, and J. B. Mckitterick, “ Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys., vol. 64, pp. 4943-4950, 1988.
[34] G. T. Reed, L. Jinhua, C. K. Tang, L. Chenglu, P. L. F. Hemment, and A. G. Rickman, “Silicon-on-insulator optical waveguides formed by direct wafer bonding,” Mater. Sci. Eng., B15, pp. 156-159, 1992.
[35] P. D. Trinh, S. Yegnanarayanan, F. Coppinger and B. Jalali, “Silicon-on-Insulator(SOI) Phased-Array Wavelength Multi/ Demultiplexer with Extremely Low-Polarization Sensitivity,” IEEE Photon. Technol. Lett., vol. 9, pp. 940-942, 1997.
[36] 歐燐育,SOI-AWG元件之設計與模擬,交通大學光電所碩士論文,民國90年.
[37] D. A. Neamen, “Semiconductor Physics and Devices,” Homewood, pp.152, 1992.
[38]A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon Electro-Optic Modulator Based on a Three Teminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,” J. Lightwave Technol., vol. 15, pp. 505-518, Mar. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔