(3.235.108.188) 您好!臺灣時間:2021/02/27 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳彥成
研究生(外文):Yen-Chen Chen
論文名稱:多泵浦光源應用於拉曼放大器中之特性研究
論文名稱(外文):Study of Raman Amplifiers with WDM Pumping LDs
指導教授:祁甡祁甡引用關係董正成
指導教授(外文):Sien ChiJeng-Cherng Dung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:51
中文關鍵詞:光放大器拉曼放大器拉曼效應四波混頻
外文關鍵詞:optical amplifierRaman amplifierSRSFWM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:1
本篇論文中,是利用三個不同波長(14xx nm)的泵浦雷射作為光源,以三種不同的光纖作為增益介質,去量測各種光纖的拉曼增益值。我們嘗試調整各波道泵浦光的輸出功率,使得拉曼增益曲線能趨近平坦、並有最大的增益頻寬。在50km的單模光纖中,我們得到5.33dB的峰值增益,平坦度1dB的頻寬達35nm。在50km的非零色散光纖中,我們得到5.22dB的峰值增益,平坦度1dB的頻寬達40nm。在15.4km的色散補償光纖中,得到7.84dB的峰值增益,平坦度1dB頻寬達36nm。
其次,我們由實驗求得在雙向泵浦放大架構中,前向與背向泵浦功率的最佳比例。當此比例為9:91時,可得到最佳的拉曼增益及噪聲指數。
最後,我們提出實驗中觀察到的四波混頻現象。此現象發生在前向泵浦放大架構並以非零色散光纖作為增益介質時。其原因在於泵浦光與特定波長信號光的群折射率(ng)幾乎相等、造成相位一致,進而發生泵浦光的多模頻譜在信號光處產生的四波混頻現象。因此我們建議若欲以非零色散光纖作為拉曼放大器的增益介質時,最好採取背向背大的架構;若欲使用前向放大的架構,則需慎選泵浦光源的波長>1460nm,來放大L-band的訊號,如此方可避免產生在非零色散光纖中的四波混頻現象。

In this thesis, we use three different wavelength 14xx LDs as pumping source to measure the Raman gain of three different fibers:SMF、LEAF and DCF. We try to adjust each pump power to make gain flatten then get a wide flatten bandwidth. 1dB flatness Raman gain over 35nm bandwidth can be achieved in 50km SMF with peak gain 5.33dB while 40nm bandwidth can be achieved in 50km LEAF with peak gain 5.22dB. 1dB flatness Raman gain over 3nm bandwidth can be achieved in 15.4km DCF with peak gain 7.84dB.
Then we want to find out the best ratio of forward and backward pump power in bi-directional pumping Raman amplifier. Result has that 9:91 is the ideal ratio when bi-directional pumping is applied in Raman amplifier. In the case of using LEAF as the gain medium, forward pumping will cause FWM between pump and signal. We suggest backward pumping or choosing longer pump wavelength (>1460nm) in forward pumping to amplify L-band WDM signals in order to avoid FWM in LEAF.

CONTENTS
PAGE
CHINESE ABSTRACT ……………………………………………………… I
ENGLISH ABSTRACT ……………………………………………………… II
ACKNOWLEDGEMENT …………………………………………………… III
CONTENTS …………………………………………………………………… IV
LIST OF FIGURES …………………………………………………………… VI
Chapter 1. Introduction
1-1. Traditional Configuration of WDM Systems …………………… 1
1-2. Raman Amplification in Optical Fibers ………………………… 2
1-3. Erbium-Doped Fibers versus Raman Ampification …………… 5
Chapter 2. Basic Theory of Fiber Raman Amplifier
2-1. Stimulated Inelastic Scattering …………………………………… 9
2-2. Generalized Nonlinear Pulse propagation Equation ……………… 11
2-3. Fiber-Raman Amplifiers …………………………………………… 15
2-4. Raman —Induced Crosstalk ………………………………………… 19
2-5. Effect of Four-Wave Mixing ………………………………………… 21
Chapter 3. Measure the Raman Gain of Different Fibers and Make Gain Flatten
3-1. Experimental Setup …………………………………………………… 23
3-2. Raman gain of 50km SMF …………………………………………… 23
3-3. Raman Gain of 50km LEAF ………………………………………… 27
3-4. Raman Gain of 15.4km DCF ………………………………………… 30
3-5. Make gain Flatten by Adjusting Pump power ……………………… 34
Chapter 4. Find the Best Ratio of Forward/Backward Pump Power in Bi-directional Raman Amplifier
4-1. Our Motivation and Experimental Setup …………………………… 36
4-2. Noise Figure Measurement Technology …………………………… 37
4-3. Experimental results and Discussion ……………………………… 39
Chapter 5. FWM Observed in LEAF with Forward Pumping ……………… 43
Chapter 6. Conclusion ………………………………………………………… 49
Reference ………………………………………………………………………… 50

1. N. Bloembergen, Nonlinear Optics (Genjamin, Reading, MA, 1977) Chap.1.
2. Y.R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
3. P. N. Butcher and D. N. cotter, The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, UK, 1990).
4. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 1992).
5. R. H. Stolen, E. P. Ippen, and A. R. Tynes, Appl. Phys. Lett. 20, 62(1972).
6. E. P. Ippen and R. H. Stolen, appl. Phys. Lett. 21, 539(1972).
7. R. G. Smith, Appl. Opt. 11, 2489(1972).
8. M. D. Feit and J. A. Fleck, Appl. Opt. 17, 3990(1978).
9. Y. Suematsu, Optical Devices and Fibers(1985).
10. J. AuYeung and A. Yariv, IEEE J. Quantum Electron. QE-14, 347(1978).
11. A. R. Chraplyvy and P. S. Henry, electron. Lett. 20,185(1984).
12. A. Tomita, Opt. Lett. 8, 412(1983).
13. D. Cotter and A. M. Hill, Electron. Lett. 20, 185(1984).
14. A. M. Hill, D. cotter, and J. V. wright, Electron Lett. 20,247(1984).
15. H. F. Mahlein, Opt. Quantum Electron. 16, 409(1984).
16. J. Hegarty, N. A. Olsson, and M. McGlashan-Powell, electron. Lett. 21, 395(1985).
17. N. A. Olsson, J. Hegarty, R. A. Logan, L. F. Johnson, K. L. Walker, L. G. Cohen, B. L. Kasper, and J. C. Campbell, Electron. Lett. 21, 105(1985).
18. A. R. Chraplyvy, J. Lightwave Technol. 8,1548(1990)
19. R. G. warts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R. P. Braun, Proc. IEEE 78,1344(1990)
20. S. Chi and S. C. Wang, Electron. Lett. 26, 1509(1992)
21. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1992).
22. S. Tariq and J. C. Palais, J. Lightwave Technol. 11, 1914(1993).
23. M. Hosakawa, S. Seikai, and H. Miki, trans. IECE Jpn. J76,35(1993)
24. Dennis Derickson, Fiber Optic Test and Measurement (Hewlett-Packward Company, 1998)
25. T. T. Kung, C. T. Chang, J. C. Dung, and S. Chi, “Four Wave Mixing between Pump and Signal in a Distributed Raman Amplifier,” submitted to J. Lightwave Techn

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔