跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/27 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳嘉駒
研究生(外文):Chia-Chu Chen
論文名稱:參鉺光纖放大器之極化態色散補償
論文名稱(外文):Polarization Mode Dispersion Compensation of Erbium-Doped Fiber Amplifier
指導教授:祁甡祁甡引用關係董正成
指導教授(外文):Sien ChiJeng-Cherng Dung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:60
中文關鍵詞:參鉺光纖放大器補償極化態色散
外文關鍵詞:Erbium-Doped Fiber AmplifierCompensationPolarization Mode Dispersion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,由於光纖通訊系統對於高位元率和高傳輸速率的需求,使得極化態色散補償變得越來越重要。再加上參鉺光纖放大器,已經是光纖傳輸系統當中所不可或缺的元件,所以在本篇論文裡,我們利用法拉第旋轉鏡和光迴旋器所組成的參鉺光纖放大器,來對極化態色散做補償。實驗數據將會顯示它可以將極化態色散值補償接近至零。而不同的極化態造成信號增益值之不同的情形,也會因此實驗架構而改善。
除了有探討極化態所造成的問題外,我們也有提出我們所組成放大器的信號增益值與雜訊指數,其增益值優於傳統的光纖放大器,而雜訊指數約為5dB。

Polarization mode dispersion (PMD) compensation becomes more and more important because of the demands for high bit rate in fiber transmission systems. So in this thesis, we use a Faraday rotator mirror and circulator to construct a double pass erbium-doped fiber amplifier (EDFA) for PMD compensation. We will demonstrate the ability that our structure can reduce the PMD values to near zero. The polarization dependent gain (PDG) is also discussed and we can reduce this effect to half of the conventional EDFA’s value.
Beside the polarization effects, we will also show the signal gain and noise figure of our double pass EDFA. This structure can achieve higher gain than conventional one pass EDFA and the noise figure is around 5dB.

CHAPTER 1
General Introduction
1.1 Importance of Fiber Amplifier…………………………………………… 1
1.2 Objective…………………………………………………………………. 2
CHAPTER 2
Basic Concept of Erbium-Doped Fiber Amplifier
2.1 Amplification in Three-Level Systems…………………………………... 5
2.1.1 Three-Level Rate Equation………………………………………… 5
2.1.2 General Rate Equation……………………………………………... 9
2.2 Gain and Amplified Spontaneous Emission Modeling………………….. 10
2.2.1 Modeling Equation — Homogeneous Broadening…………………. 10
2.2.2 Average Inversion Relationship…………………………………… 13
2.3 Optical Noise……..……………………………………………………... 14
2.3.1 Noise at the Output of an Amplifier……………………………….. 14
2.3.2 Noise at Receiver………………………………………………….. 19
2.3.3 Noise Figure……………………………………………………….. 20
CHAPTER 3
Polarization Mode Dispersion and Polarization Dependent Gain
3.1 Polarization Mode Dispersion…………………………………………….. 24
3.1.1 Introduction………………………………………………………..... 24
3.1.2 Cause of Polarization Mode Dispersion…………………………….. 25
3.1.3 Mode Coupling and the Principal State of Polarization…………….. 28
3.1.4 Definition and Relationships………………………………………... 29
3.1.5 The Poincaré Arc Method………………………………………….... 31
3.1.6 Polarization Mod Dispersion Compensation………………………... 32
3.2 Polarization Dependent Gain……………………………………………… 32
CHAPTER 4
Experimental Result of Gain and Noise Figure
4.1 Gain Measurement………………………………………………………..... 35
4.1.1 Experimental Setup and Result for One Pass……………………….... 35
4.1.2 Experimental Setup and Result for Double Pass…………………....... 39
4.2 Noise Figure Measurement………………………………………………..... 42
4.2.1 Experimental Setup and Result for One Pass……………………….... 44
4.2.2 Experimental Setup and Result for Double Pass…………………....... 47
CHAPTER 5
Experimental Result of PMD and PDG
5.1 Polarization Mode Dispersion Measurement………………………………. 53
5.1.1 Experimental Results for One Pass EDFA………………………….... 54
5.1.2 Experimental Results for Double Pass EDFA……………………....... 55
5.2 Polarization Dependent Gain Measurement……………………………....... 56
CHAPTER 6
Conclusion
6.1 Conclusion………………………………………………………………….. 60
Bibliography.................................................................................................... 62

[1] Courtesy KMI Corporation, Newport, RI
[2] X. Shan, R. E. Schuh, A. Altuncu, and A. S. Siddiqui, “Polarization Mode Dispersion in Distributed Erbium-Doped Fibers” Optical Fiber Technology 5, 75-81, 1999
[3] E. Lichtmann, “Performance degradation due to polarisation dependent gain and loss in lightwave systems with optical amplifiers” Electronic Letters, October 1993, Vol. 29, NO. 22
[4] F. Bruyère and O. Audouin “Penalties in Long-Haul Optical Amplifier Systems Due to Polarization Dependent Loss and Gain” Photonics Tech. Lett. Vol 6., NO. 5, May 1994
[5] Dipak Chowdhury, “PMD induced system impairments in long-haul optical communication system”
[6] Paul D. Biernacki, Lee T. Nichols, Paul J. Matthews, “Noise effect in polarization maintaining optical amplifiers” OFC 2000, Vol. 2
[7] N.A. Olsson, J. Light. Tech. 7, 1071 (1989).
[8] Poole, C.D. and R.E Wanger. 1986. Phenomenological approach to polarization dispersion in long singlemode fibers. Electronics, 22: 1029-1030.
[9] Darcie, T.E. and C.D. Poole. 1992. Polarization-induced performance variables. Communication Engineering and Design.
[10] Bahsoun, S., J. Nagel, and C. Poole, 1990. Measurements of temporal variations in fiber transfer characteristics to 20 GHz due to polarization-mode dispersion. Proc. 16th European Conf. Opt. Comm., Amsterdam: 1003-1006.
[11] Pool, C.D., R.W. Tkach, A.R. Chraplyvy, and D.A. Fishman. 1991. Fading in lightwave systems due to polarization-mode dispersion. IEEE Photonics Technology Letters, 3: 68-70.
[12] Pool, C.D. 1988 Optics Letters. 13: 687.
[13] Pool, C.D., J.H. Winters, and N.A. Nagel. 1991. Dynamical equation for polarization mode dispersion. Optics Letters. 16: 372-374.
[14] Foschini, G.J. and C.D. Poole. 1991. Statistical theory of polarization dispersion in singlemode fibers. Journal of Lightwave Technology, LT-9: 1439-1456.
[15] Gisin, N. and J.p. Pellaux. 1992. Polarization mode dispersion: time versus frequency domains. Optics Communications, 89: 316-323.
[16] Born, M. and E. Wolf. 1980 Principles of optics. 6th ed. Pergamon
[17] Bergano, N.S., C.D. Poole, and R.E. Wanger. 1987. Investigation of polarization dispersion in long lengths of singlemode fiber using multi-longitudinal mode lasers. Journal of Lightwave Technology, LT-5: 1618-1622.
[18] Shinji Yamashita, Kazuo Hotate and Masataka Ito, “Polarization Properties of a Reflective Fiber Amplifier Employing a Circulator and a Faraday Rotator Mirror,” J. Lightwave Technol. Vol. 14, NO. 3, March 1996
[19] C.R. Giles, “Suppression of polarization hole burning induced gain anisotropy in reflective EDFAs” Elect. Lett. Vol. 30, NO. 12, 1994
[20] W.A. Arellano, M.O. Berendt, and H.L. Fragnito, “Polarization modulation study of gain anisotropy in EDFAs”, 304,CLEO 2000
[21] M.G. Taylor, IEEE Phot. Tech. Lett. 5, 1244 (1993)
[22] D.W. Hall, M. J. Weber, and R.T. Brundage, J. Appl. Phys. 55, 2642 (1984)
[23] E.J. Greer, D.J. Lewis, and W.M. Macauley, Elect. Lett. 30, 46 (1994)
[24] F. Bruyere, Elect. Lett. 31, 401 (1995)
[25] Seongtaek Hwang, Kwan-Woong Song, Hyung-Jin Kwon, Junho Koh, Yun-Je Oh, and Kyuman Cho “Broad-band Erbium-Doped Fiber Amplifier with Double-Pass Configuration” IEEE Phot. Tech. Lett. 13, NO. 12, 2001

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top