跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 07:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙鴻儒
研究生(外文):Hung-Ju Chao
論文名稱:驅動雷射二極體並利用光固子壓縮技術產生次皮秒光脈衝之研究
論文名稱(外文):Study of Sub-Picosecond optical Pulse Generation From Semiconductor Laser Using the Soliton-Effect Compression Technique
指導教授:祁甡祁甡引用關係董正成
指導教授(外文):Sien ChiJeng-Cherng Dung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:54
中文關鍵詞:雷射二極體光固子壓縮技術線性壓縮非線性壓縮光固子效應
外文關鍵詞:Semiconductor Laser diodeSoliton-Effect Compression Techniquelinear pulse compressionnonolinear pulse compressionsoliton effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,是利用非線性光學中的光固子效應來產生一個壓縮脈衝光。並針對以光固子效應壓縮中的缺點,進行相關的處理。最後並達成一完整乾淨的壓縮脈衝,其脈衝寬度由原始的24皮秒壓縮到622飛秒。
其中,在原始脈衝的部分,是利用外接射頻增益開關的方式來調變,並產生基本脈衝。在線性壓縮脈衝方面,是利用高負色散的光纖,使得存在於光脈衝的啾頻與其色散現象相互作用,進而達成光脈衝壓縮。而非線性壓縮脈衝,則是利用光固子的效應,自相位調變現象與光纖中之色散現象相互作用,並在最佳的一個長度上,擷取出在作用中最窄的壓縮脈衝。但由於在此壓縮脈衝的機制中,會產生一很大的底盤效應,使得產生之脈衝品質變低。有鑑於此,產生出來的光壓縮脈衝必須再處理,而處理方式,是利用光纖非線性現象中的雙折射效應,讓不同的光強度,產生不同的相位差,不同的偏振態,用已去除底盤,而達到一個無底盤效應的乾淨非線性壓縮脈衝。

In this thesis, we use soliton effect to generate a compressed pulse. An inherent drawback of the soliton-effect compression pulse has a large pedestal. We also remove it and get a quality good pedestal-free pulse. In our experimental result, the pulse width is compressed from 24ps to 622fs.
The basic optical pulses, it uses the RF signal to modulate. It is so-called Gain-Switched modulation and obtains a 20~30ps pulse. In the linear pulse compression, the negative high dispersion fiber compensates negative chirped pulse. The pulse width can be compressed to 7ps. Furthermore, the nonlinear pulse compression uses a piece of optimum fiber length to compress linear pulse compression. It employs SPM and GVD interplay in a fiber. It also needs a high peak power to generate nonlinear effect. It compresses once more and pulse width is 622fs. But the pulse has a large pedestal. Finally, we use the intensity discriminator to remove pedestal. It uses the intensity dependent birefringence effect in optical fibers and to realize pedestal free nonlinear compressed pulse. The pulse width is equal to nonlinear pulse compression pulse.

CONTENTS
Page
CHINESE ABSTRACT …………………………………………………. I
ENGLISH ABSTRACT …………………………………………………. ⅡACKNOWLEDGMENTS …………………………………………………. Ⅲ
CONTENTS ……………………………………………………………. Ⅳ
LIST OF FIGURES ……………………………………………………….. Ⅵ
CHAPTER 1
GENERAL INTRODUCTION
1.1 Motivation ……………………………………………………………. 1
1.2 Overview of Optical Pulse Compression ……………………………. 2
CHAPTER 2
THEORY OF OPTICAL PULSE COMPRESSION
2.1 Brief Introduction ………………………………………………… 4
2.2 Generation of Optical Pulse ………………………………………… 4
2.3 Method of Ultra-Short Pulse Measurement ………………………….. 5
2.4 Linear and Non-linear Phenomenon in the Optical Pulse Compression
2.4.1 Fiber Refractive Index ………………………………… 8
2.4.2 Optical Fiber Loss ………………………………… 10
2.4.3 Chromatic Dispersion ………………………………… 11
2.4.4 Modal Birefringence ………………………………… 16
2.4.5 Fiber Non-Linearity ………………………………… 17
2.4.6 Dispersion-Induced Pulse Broadening ……………………… 19
2.4.7 Chirp Gaussian Pulse ………………………………… 21
2.4.8 SPM-Induced Spectral Broadening ……………………… 23
2.4.9 Soliton-Effect Pulse Compression ……………………… 24
CHAPTER 3
GENERATION OF OPTICAL PULSE
3.1 Method of Optical Pulse Generation ………………………………… 26
3.2 Experimental Setup ………………………………………………… 26
3.3 Component Property Measurement
3.3.1 DFB Laser L-I Curve Measurement ………………………... 28
3.3.2 Comb Generator Generate and Measure ……...………… 30
3.4 Experimental Results and Discussion ………………………………… 32
CHAPTER 4
LINEAR OPTICAL PULSE COMPRESSION
4.1 Method of Linear Optical Pulse Compression ……………………… 35
4.2 Experimental Setup ………………………………………………… 35
4.3 Dispersion Compensation Fiber Lengths Estimates …………………... 36
4.4 Experimental Results and Discussion ………………………………… 37
CHAPTER 5
NONLINEAR OPTICAL PULSE COMPRESSION
5.1 Method of Nonlinear Optical Pulse Compression ……………….... 40
5.2 Experimental Setup ………………………………………………… 40
5.3 Nonlinear Optical Pulse Compression Estimate …………………… 41
5.4 High-Power EDFA for High-Order Soliton Peak Power …………… 44
5.3 Experimental Results and Discussion ………………………………… 45
CHAPTER 6
REMOVE PEDESTAL FROM NONLINEAR PULSE COMPRESSION
6.1 Method of Remove pedestal …………………………………………… 49
6.2 Experimental Setup ………………………………………………… 49
6.3 Theory of Pulse Reshaping …………………………………………... 50
6.4 Experimental Results and Discussion ………………………………… 51
CHAPTER 7
CONCLUSIONS AND PROSPECT
Application and Prospect of Optical Pulse Compression ………………… 52
REFERENCE …………………………………………………………… 53

REFERENCE
[1] M. Nakaazawa, and K. Kurokawa, “Femtosecond soliton transmission in 18km-long dispersion0shifted distributed Erbium-doped fiber amplifier” Electron. Lett vol.27,pp.1369-1370,1991
[2] L. F. Mollenauer, E. Litchman, G. T. Harvey, M. J. Neubelt, and B. M. Nyman,” Demonstration of error-free soliton transmission over more than 15000Km at 5Gbit/s, single-channel, and more than 11000Km at 10Gbit/s in two-channel WDM,”electron. Lett., vol 28, pp.792-794,1992.
[3] S. K. Korotky, G. Eisenstein, R C. Alerness, J. J. veselka, L. L. Buhl, G. T. harver, and p. h. Read,”Fully connectorized high speed switch/modulator for TDM and data encoding” J. lightwave technol.., vol. 3, pp.1-5,1985.
[4] P. Y. chien,”Time-division multiplexing, pseudo-PM optical communication system base on triangular waveform modulated laser diode,” J. Opt. Commun., vol.13, pp.23-25,1992.
[5] S. Kawanishi, H. Takara, K.Ychiyama, T. Kitoh, and M Sruwatari,”100Gbit/s optical transmission employing all optical multi.demultiplexing and PLL timing extraction,” in PROC OFC/IOOC-93.
[6] G Eisenstein, R. S. Tucker, U. Koren, and S. K. Koeotkym: active mode locking characteristics of InGaAsP single mode fiber composite cavity laser,” IEEE J. Quantum Electron., vol QE-22, pp. 142-147,1986.
[7] \D. J. Derickson, R. J. Helkey, A. Marm H, R, Karin, J. G. Wasserbauerm and J. E. Bower,” short pulse generation using multisegment mode-locking semiconductor laser,” IEEE J. quantum Electron., vol. QE-28, pp. 2186-2202,1992.
[8] L. Chusseau and E, Delecaque, “250-fs optical pulse generation by simultaneous soliton compression and shaping in a nonlinear optical loop mirror includeing a weak attenuation,”Opt. Lett., vol. 19,pp.734-736,1994.
[9] R. H. Stolen, J. Botineeau, and A. Ashkin,” Intensity discrimination of optical pulse with birefringent fibers,” opt. Lett., vol. 7 pp. 512-514,1982.
[10] Govind P. Agrawal, “Nonlinear Fiber Optics”, second editon,1995.
[11] A. takada, T. Suii, and M. Saruwatari, Rlrctron. Lett. 22, 1347 ,1986
[12] K. Iwatsuki, K. Suzuki, and S, Nishi, Electron. Lett. 27,1991
[13] R. T. Hawkiins,Electron. Lett. 26,292,1990
[14] H.F.Liu,Y.Ogawa,S. Oshiba, and T, Tonaka, IEEE J. Quantum Electron. 29,1992
[15] K. Suzuki, K. Iwatsuki, S. Nishi, M. Saruwatari, and T, Kitoh,IEEE photon. Technol. Lett. 6,352,1994
[16] H.F.Liu,Y.Ogawa,S. Oshiba, and T, Tonaka,”Picosecond Pulse Generation from a 1.3um Distributed Feedback Laser Diode Using Soliton-effect Compression”.IEEE J. Quantum elecreoniccs. Vol.27 No6,1991
[17] Amnon Yarive,”Optical Electronics In Modern Communications”,Fifth Edition,1997
[18] A. Hasegawa , F. Tappert, Appl. Phys. Lett. 23,pp.142,1973
[19] L. F. Mollenaure, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45,pp.1095,1980
[20] Govind P. Agrawal, “Nonlinear Fiber Optics”, Chapter 4,second editon,1995.
[21] E. M. Dianov, A. Ya. Karasik, P. V. Mamyshec,G. I. Onischukov, A. M. Prokhorov, M. F. Stel’makh,and A. A. Fomichev, JETP Lett. 40,pp.903,1984
[22] Lauent Chusseau and Christophe Kazmierski,”Optimum Linear Pulse Compression of a Gain-Switched 1.5um DFB Laser”,IEEE Photo.Tech. Lett., vol.6. BO.1,1994
[23] C. T. Chang,C. K. sun, D. J. Albares, and E. W. Jacobs,”High-energy(59pJ) and Low-Jitter(250fs) Picosecond Pulses from Gain-Switching of a Tapered-Stripe Laser Diode via Resonant Driving”IEEE Photo. Tech. Lett.,Vol8,1996
[24] Mark D. Pelusi , H. F. Liu,”Higher Order Soliton Pulse Compression In Dispersion-Decreasing Optical Fibers”,IEEE J. Quantum Electronics,Vol33,1997
[25] Laurent Chisseau, eric Delevaque,”Nonlinear Optical Compression of Er-Fiber Amplifier 1.5um Laser Diode Pulses.”IEEE J. Quantum Electronics,Vol.2,1996
[26] K. C. Chan,H.F. Liu,”Short Pulse Generation by Higher Order Soliton-Effect Compression:Effects of Optical Fiber Characteristics”IEEE J. Quantum Electronics,Vol. 31,1995
[27] K. A, Ahmed, K. C. Chan and H. F. Liu,”Femotosecond Pulse Generation from Semiconductor Lasers Using the Soliton-Effect Compression Technique”IEEE J. Quantum Electronics, Vol1 ,1995
[28] H. F. Liu,Y. Ogawa,S. O. Oshiba,and T. Nonaka,”Picosecond Pulse Generation from a 1.3um Distributed Feedback Laser Diode Using Soliton-Effect Compression”,IEEE J. Quantum Electronics, vol. 27 ,1991

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top