跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/27 03:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐明鴻
研究生(外文):MingHong Hsu
論文名稱:氧化銀之三階非線性光學材料於全光學式光開關之應用
論文名稱(外文):AgOx-based 3rd order Nonlinear Optical Nanomaterials for All-optical Switching Applications
指導教授:謝漢萍謝漢萍引用關係
指導教授(外文):Han-Ping D. Shieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:70
中文關鍵詞:全光學式光開關氧化銀非線性光學
相關次數:
  • 被引用被引用:2
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超快全光學式光開關是下一代高容量通訊系統中的關鍵技術。為了要實現全光學式光開關元件,較大的三階非線性率、超快速的響應時間以及在室溫下可運作的非線性光學材料是不可或缺的。在這些材料中,金屬奈米粒子由於具有較大的三階非線性率以及快速的響應時間,因此在光開關及光學計算領域中已成為目前備受矚目的非線性光學材料。其中,銀和金奈米粒子由於在可見光的範圍內有因電漿子共振所造成的強烈吸收而更受到青睞。本論文的主要目標是以氧化銀材料為基礎,製造出在可見光範圍內有較大三階非線性率以及快速響應時間的氧化銀奈米粒子。
在本論文研究中,我們利用濺鍍方式以及加熱的步驟在玻璃基板上製造出氧化銀的奈米粒子。所得之平均粒子大小在48到87 nm之間,而其相對應之粒子電漿共振波長由420增加到450 nm。我們利用Z-scan量測估算出其三階非線性極化率的大小為6.6810-10 (esu),而在pump-probe實驗中,我們量測到氧化銀奈米粒子的反應時間大約為27 ps。

Ultrafast all-optical switching (AOS) is a key technology for the next generation high capacity communication systems. To implement AOS devices, nonlinear optical materials with strong third-order nonlinearity, ultrafast response time and operability at room temperature are required. Metal nanoparticles are of interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearities and fast response time. Silver and gold nanoparticles are of special interest as they exhibit particularly strong optical extinction in the visible spectral range due to resonant electron plasma oscillation. The main goal of this thesis is to fabricate the AgOx-based nanoparticles with large third-order nonlinearities and ultrafast response time in the visible spectral range.
In this thesis, we have fabricated the AgOx nanoparticles on glass substrate by sputtering and annealing processes. The average particle size thus fabricated varies from 48 to 87 nm, and the particle plasmon resonance wavelengths increase from 420 to 450 nm with increase of particle size. We also estimated the value of the third-order nonlinear susceptibility ( ) as about 6.6810-10 (esu) by Z-scan measurement. In the pump-probe measurement, we obtained the response time of AgOx nanoparticles is about 27 ps.

中文摘要 I
Abstract III
Contents V
Figure Contents VII
Table Contents X
Chapter 1 Introduction 1
Chapter 2 Principles 4
2.1 Metal nanoparticles 4
2.1.1 Plasmon modes in metals 5
2.1.2 Spectral selective light absorption and scattering 10
2.2 Nonlinear optical effects of metal nanoparticles 12
2.2.1 Third-order nonlinear optical effects 14
2.2.2 enhancement due to particle plasmon excitation 18
2.3 Z-scan technique 19
2.3.1 Principle of Z-scan Technique 21
2.4 Properties of silver oxide film 27
Chapter 3 Instruments 30
3.1 SFI sputtering system 30
3.1.1 S-gun with planetary mechanism 30
3.1.2 Pumping and Load-lock System 33
3.1.3 Gauge 34
3.2 Atomic Force Microscope (AFM) 35
Contact mode 36
Tapping mode 36
Non-contact mode 37
3.3 Ultraviolet and Visible Absorption Spectroscopy (UV-Vis) 39
3.4 Z-scan experiment 41
3.5 Pump-probe experiment 43
Chapter 4 Experimental data 45
4.1 AgOx nanoparticles fabrication 45
4.1.1 AgOx film preparation 45
4.1.2 Annealing processes 48
4.2 Absorption spectra measurement 53
4.3 Third-order nonlinearity measurement 55
4.3.1 Z-scan experimental procedures 55
4.3.2 Z-scan experimental results 56
4.4 Response time measurement 61
4.4.1 Experimental procedures 61
4.4.2 Experimental results 61
Chapter 5 Conclusion 65
Future works 67
Bibliography 68

[1] C. Bohren and D. Huffmann, Absorption and Scattering of light by small particles ( John Wiley, New-York, 1983).
[2] U. Kreibig and M. Vollmer, Optical properties of Metal Clusters (Springer, Berlin, 1995).
[3] K. Tanaka, T. Yoko, M. Atarash, and K. Kamiya, J. Mater. Sci. Lett. 8, 83(1989).
[4] K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, A. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, J. Opt. Soc. Am. B 11, 1236(1994).
[5] B. Lamprecht, Ph.D. thesis, Karl-Franzens University of Graz, 2000.
[6] H. Hövel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Phys. Rev. B 48 18178(1993).
[7] H. Raether, Excitations of Plasmons and Interband Transitions by Electrons (Springer, Berlin, 1980).
[8] H. Raether, Surface Plasmons (Springer, Berlin, 1988).
[9] N. Bloembergen, Nonlinear Optics (W. A. Benjamin, Inc., New York, Amsterdam, 1965).
[10] R. Shen, The principle of nonlinear optics (John Wiley, New York, 1984).
[11] R. L. Sutherland, Handbook of nonlinear optics (Marcel Dekker, Inc., New York, Basel, Hong Kong, 1996).
[12] Bahaa E. A. Saleh and Malvin Carl Teich., Fundamentals of photonics (John Wiley & Sons, Inc., New York, 1991).
[13] I. Tanahashi, Y. Manabe, T. Tohda, S.Sasaki and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79 (3), 1244(1996).
[14] Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallée and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett. 75 (12), 1712(1999).
[15] H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori and H. Nakatsuka, “Ultrafast Optical Switching in a Silver Nanoparticle System,” Jpn. J. Appl. Phys. 39, 5132(2000).
[16] D. H. Osborne, R.F. Haglund, F. Gonella and F. Garrido, “Laser-induced sign reversal of the nonlinear refractive index of Ag nanoclusters in soda-lime glass,” Appl. Phys. B 66, 517(1998).
[17] I. Tanahashi, H. Inouye, K. Tanaka and A. Mito, “Preparation and Femtosecond Third-Order Nonlinear Optical Properties of Cu/SiO2 Composite Thin Films,” Jpn. J. Appl. Phys. 38, 5079(1999).
[18] M. Kyoung and M. Lee, “Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2,” Bull. Korean Chem. Soc. 21(1), 26(2000).
[19] D. S. Chemla, J. P. Heritage, P. F. Liao and E. D. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B 27, 4553(1983).
[20] D. Richard, P. Roussignol and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511(1985).
[21] F. Hache, D. Ricard and C. Flytzanis, “Optical nonlinearities of small metal particles: surface mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647(1986).
[22] F. Hache, D. Ricard, C. Flytzanis and U. Krebig, “The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347(1988).
[23] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760(1990).
[24] J. W. Fergus, C. V.S. Mallipedi and D. L. Edwards, “Silver/Silver-oxide composite coating for intrinsically adaptive thermal regulation,” Composies Part B 29B, 51(1998).
[25] D. B. Oakes, R. H. Krech, B. L. Upschulte and G. E. Caledonia, “Oxidation of polycrystalline silver films by hyperthermal oxygen atoms,” J. Appl. Phys. 77(5), 2166(1995).
[26] W. A. Parkhurst, S. Dallek and B. F. Larrick, “Thermogravimetry evolved gas analysis of silver oxide cathode material,” J. Electrochem. Soc. 131(8), 1739(1984).
[27] S. Dallek, W. A. West and B. F. Larrick, “Decomposition kinetics of AgO cathode material by Thermogravimetry,” J. Electrochem. Soc. 133(12), 2451(1986).
[28] A. J. Varkey and A. F. Fort, “Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition,” Sol. Energy Mater. and Sol. Cells 29, 253(1993).
[29] Hiroshi Fuji, Junji Tominaga, Liqiu Men, Takashi Nakano, Hiroyuki Katayama and Nobufumi Atoda:” A Near-Field Recording and Readout technology Using a Metallic Probe in an Optical Disk, ” Jpn. J. Appl. Phys., 39(2B), 980(2000).
[30] “SFI Operating and Maintenance Instructions”, Sputtered Films INC. (1991).
[31] P. J. Clarke, J. Vac. Sci. Technol. 14, 141 (1977).
[32] R. F. Bunshah, Handbook of Deposition Technologies for Films and Coatings: Science, Technology, and Applications, 2nd edition, (Noyes Publications, 1994).
[33] J. L. Vossen and W. Kern, “Thin Film Processes, (Academic Press, New York ,1978).
[34] B. Chapman, Glow Discharge Processes, (John Wiley & Sons, New York (1980).
[35] DI model 3100 SPM Operating Manual, (Digital Insruments, INC., 2000).
[36] G. Binnig, C.F. Quate and Ch. Gerber:”Atomic Force Microscope,” Phys. Rev. Lett., 56, 930(1986).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 14. 李心平、張斐章(1995),「模糊控制理論應用於土石流預警系統之研究」,中華水土保持學報,第二十六卷二期,第145頁至第154頁。
2. 13. 鄧振源、曾國雄,「層級分析法(AHP)的內涵特性與應用(上)」,中國統計學報」,第27卷第6期,頁6-22,民國七十八年。
3. 14. 李心平、張斐章(1995),「模糊控制理論應用於土石流預警系統之研究」,中華水土保持學報,第二十六卷二期,第145頁至第154頁。
4. 17. 蘇雄義、賴憲忠,「應用AHP於設定專業員工績效評估準則之個案研究與啟示」,東吳經濟商學學報,第15期,頁115,民國八十四年。
5. 4. 李樑堅、張志向,「銀行業服務品質評估項目及構面建立之研究」,義守大學學報,第4期,頁349,民國八十六年。
6. 21. 張石角(1994)「臺灣山坡地開發與公共福祉」,研考雙月刊18卷第4期,第21頁至第29頁。
7. 16. 賴光真,「教科書選用評準權重的決定:分析層級程序法AHP的應用」,研習資訊,第13期,頁12,民國八十五年。
8. 16. 賴光真,「教科書選用評準權重的決定:分析層級程序法AHP的應用」,研習資訊,第13期,頁12,民國八十五年。
9. 15. 盧淵源,「分析層級程序法(AHP method)之應用」,金屬工業月刊,28卷1期,頁19-22。
10. 15. 盧淵源,「分析層級程序法(AHP method)之應用」,金屬工業月刊,28卷1期,頁19-22。
11. 14. 鄧振源、曾國雄,「層級分析法(AHP)的內涵特性與應用(下)」,中國統計學報」,第27卷第7期,頁1-19,民國七十八年。
12. 14. 鄧振源、曾國雄,「層級分析法(AHP)的內涵特性與應用(下)」,中國統計學報」,第27卷第7期,頁1-19,民國七十八年。
13. 13. 鄧振源、曾國雄,「層級分析法(AHP)的內涵特性與應用(上)」,中國統計學報」,第27卷第6期,頁6-22,民國七十八年。
14. 4. 李樑堅、張志向,「銀行業服務品質評估項目及構面建立之研究」,義守大學學報,第4期,頁349,民國八十六年。
15. 1. 方國定、許欽嘉,「便利商店立地選擇之評估─AHP決策模式」,科技學刊,第八期,頁31,民國八十八年。