跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 15:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林炆標
研究生(外文):Wen-Piao Lin
論文名稱:寬頻光纖擷取網路架構及實現
論文名稱(外文):Architectures and Implementations of Broadband Fiber Access Networks
指導教授:祁甡祁甡引用關係高銘盛
指導教授(外文):Sien ChiMing-Sien Kao
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:93
中文關鍵詞:高密度分波多工星形-環形架構改良式星形-環形架構星形-巴士-環形架構雙向路徑保護環形架構光干擾光網路單元
外文關鍵詞:Dense Wavelength Division MultiplexingStar-Ring ArchitectureModified Star-Ring ArchitectureStar-Bus-Ring ArchitectureBidirectional Protected Ring ArchitectureOptical Beat InterferenceOptical Network Unit
相關次數:
  • 被引用被引用:1
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要提出四個網路架構:星形-環形架構,改良式星形-環形架構,星形-巴士-環形架構及雙向路徑保護環形架構。這些架構是由傳統拓樸如星形,巴士及環形的混合而成,同時加入一些保護及故障回復的功能。首先,在被動星形-環形光網路上提出一串聯加取轉換器結構,此結構能有效地及有系統地解決光干擾的問題。這個設計使得低層環形網路完全消除光干擾。
其次,我們証實一個可行的改良式星形-環形架構,它採用適當的最佳二階網路架構,上層是星形次網路隨後串接多個具有自癒式功能的環形次網路。自癒式的功能可以在遠端節點執行,當鏈路斷路時藉由光開關可重組環形次網路,每一節點均採用串連加取轉換器結構以消除光干擾的問題。當考量網路容量、光干擾消除能力、服務品質及最初安裝的費用等因素時,這架構是一合宜的選擇。接著提出一個嶄新的高密度分波多工/次載波多工網路,它採用三階星形-巴士-環形架構。星形次網路建立一個高容量的基礎,接著巴士次網路提供一個多波長往返低層環形次網路的頻寬通道。在環形次網路上,每一光網路單元亦使用串連加取轉換器結構去消除光干擾問題。此架構同時提供一兩階層的保護裝置。
最後,兩階雙向路徑保護環形架構被提出應用於寬頻光纖-無線接取網路上。這架構能執行自癒式功能當鏈路斷路時,同時可提供高穩定度及良好的彈性度。網路的上下行次載波通道採用頻寬效率較佳的16-QAM調變技術。故此架構提供一個高穩定度、高效率及大頻寬給無線終端用戶。

This dissertation mainly includes four network architectures: the star-ring architecture (SRA), the modified star-ring architecture (MSRA), the star-bus-ring architecture (SBRA) and the bidirectional path-protected ring architecture (BPRA). These architectures are hybrids of the traditional topologies such as star, bus and ring with a few protected and restored functions. First, we proposed a cascade add/drop transceiver (CAT) structure in the passive optical star-ring networks to effectively and systematically solve the OBI problem. This work, being a system approach to deal with the problem, eliminates optical beat interference (OBI) completely in the lower level ring networks by using the CAT in each optical network unit (ONU).
Next we demonstrated a modified star-ring architecture (MSRA) which employs a properly optimized two-level network architecture with self-healing capabilities on the lower level. The self-healing function can be performed at remote nodes (RN) by using optical switches to reconfigure the ring subnets if any link fails. This architecture is a feasible choice in terms of the network capacity, the OBI-reducing capability, the quality of service (QoS), and the cost of initial installation. Moreover, we proposed a novelDWDM and subcarrier multiplexing network, which employs a properly designed three-level star-bus-ring architecture (SBRA). The star subnet establishes a high-capacity infrastructure for the network, whereas the bus subnets offer broadband channels for multi-wavelength signals to and from the lower-level ring subnets. In the ring subnets, we also adopted the CAT structure at each ONU to overcome OBI problem, and a simple surviving scheme based on two protected stages in the SBRA.
Finally, A two-level BPRA for a broadband fiber-wireless access network is proposed. This architecture can perform self-healing function under link failure and provide high reliability and excellent flexibility. The 16-QAM modulated signals are used in this network to achieve better spectral efficiency on both up/downstream subcarrier channels. This architecture can provide high reliability and large bandwidth for the wireless end-users.

Acknowledgments………………………………………………………I
Chinese Abstract………………………………………………………II
English Abstract………………………………………………………IV
Contents……..…………………………………………………………VI
List of Acronyms………………………………………………………IX
List of Figures…………………………………………………………XI
List of Tables…………………………………………………………XIII
Chapter 1
Introduction
1.1 Overview of Optical Access Networks……………………………1
1.2 Review of Optical Access Network Architecture………………2
1.3 Survey of DWDM/WADM…………………………………………………4
1.3.1 A new environment for DWDM……………………………………4
1.3.2 DWDM structure……………………………………………………4
1.3.3 WADM structure……………………………………………………6
1.4 Optical Transmitters and Receivers……………………………6
1.4.1 Semiconductor laser diode drivers and module…………6
1.4.2 P-i-n photodiode and receiver module design………… 8
1.4.3 Carrier-to-noise ratio measurement at receiver………9
1.5 Research Motivation and Objectives……………………………11
1.6 Organization of the dissertation………………………………11
References
Chapter 2
OBI-Free Star-Ring Architecture Networks
2.1 Overview………………………………………………………………16
2.2 Star-Ring Network Architecture ………………………………17
2.3 Implementation of Star-Ring Networks…………………………17
2.4 Experimental Results for the Star-Ring Networks…………20
2.5 Summary………………………………………………………………23
References
Chapter 3
Modified Star-Ring Architecture (MSRA) for High-Capacity
Subcarrier Multiplexing-Passive Optical Network’s (SCM-PON’s)
3.1 Overview………………………………………………………………26
3.2 MSRA Description………………………………………………… 26
3.3 Performance Analysis of MSRA Networks…………………………31
3.3.1 CNR of the upstream signal……………………………… 31
3.3.2 CNR of the upstream signal under link failure……… 32
3.3.3 CNR of the downstream signal…… ………………………33
3.3.4 Analysis Results………………………………………………33
3.4 Implementation of an MSRA Network……………………………35
3.5 Experimental Results…………………………………………… 35
3.6 Summary………………………………………………………………40
References
Chapter 4
DWDM Broadband Access Networks Based on The
Star-Bus-Ring Architecture (SBRA)
4.1 Overview………………………………………………………………42
4.2 DWDM/SCM SBRA Description…………………………………………43
4.2.1 Bidirectional wavelength add/drop multiplexer………44
4.2.2 Remote node…………………………………………………47
4.2.3 CAT structure…………………………………………………49
4.2.4 Self-healing functions……………………………………50
4.3 Channel Capacity……………………………………………………51
4.3.1 Downstream channel capacity……………………………51
4.3.2 Upstream channel capacity………………………………54
4.4 Experimental Setup and Results…………………………………55
4.5 Discussion……………………………………………………………58
4.6 Summary…………………………………………………………………59
References
Chapter 5
Broadband Wireless Access Networks using
Bidirectional Path-Protected Ring Architecture (BPRA)
5.1 Overview………………………………………………………………61
5.2 BPRA Description……………………………………………………62
5.3 Performance Analysis………………………………………………66
5.3.1 CNR of optical channel……………………………………66
5.3.2 BER of wireless fading channel……………………………68
5.4 Implementation of BRPA Networks…………………………………70
5.5 Experimental Results………………………………………………73
5.6 Summary………………………………………………………………74
References
Chapter 6
Discussion and Conclusions
6.1 Discussion……………………………………………………………76
6.2 Conclusions………………………………………………………… 78
6.3 Suggestions for Future Work……………………………………79
VITA…………………………………………………………………………XIV
Publication List…………………………………………………………XV

[1] P. Cochrane and M. Brain, “Future optical fiber transmission technology and networds,” IEEE Commun. Mag., vol. 25, no. 11, pp. 45-60, November 1988.
[2] C. Lin, K.-L. Deng and C.-K. Chen, “Broadband optical access networks,” CLEO/Pacific Rim 2001 Technical Digest, Japan, vol. II, pp. 576-578, July 2001.
[3] W. I. Way, Broadband hybrid fiber/coax access system technologies, New York: Academic Press, 1999.
[4] P. E. Green, Fiber Optic Networks, Englewood Cliffs, New Jersey: Prentice Hall, 1993.
[5] J. E. Midwinter, “Current status of optical communications technology,” J. Lightwave Technol., vol. LT-3, no. 5, pp. 927-930, 1985.
[6] G. J. Foschini and G. Vannucci, “Using spread-spectrum in a high-capacity fiber-optic local network,” J. Lightwave Technol., vol. 6, no. 3, pp. 370-379, 1988.
[7] G. R. Hill, “Wavelength domain optical network techniques,” Proc. IEEE, vol. 77, no. 1, pp. 121-132, 1990.
[8] T. Miki, “Toward the service-rich era optical access networks,” IEEE Commun. Mag., vol. 32, no. 2, pp. 34-38, 1994.
[9] S. Personick, “Protocols for fiber-optic local area networks,” J. Lightwave Technology, vol. LT-3, no. 3, pp. 426-431, 1985.
[10] A. A. M. Saleh and J.M. Simmons, “Architectural principles of optical regional and metropolitan access networks,” IEEE J. Lightwave Commun., vol. 17, pp. 2431-48, Dec. 1999.
[11] T.-H. Wu, D. J. Kolar, and R. H. Cardwell, “Survvivable network architectures for broad-band fiber optic networks: model and performance comparison,” IEEE J. Lightwave Techno., vol. 6, no. 11, pp.1698-1709, Nov. 1988.
[12] G. Levesque and V. Oliver, Guide to WDM technology & testing, Quebec City:EXFO Electro-Optical Engineering Inc., 2000.
[13] P. Green, “Progress in optical networking,” IEEE Commun. Mag., vol. 39, pp. 54-61, 2001.
[14] R. L. Cruz, G. R. Hill, A. L. Kellner, R. Ramaswami, G. H. Sasski, and Y. Yamabayashi, “Optical networks,” IEEE J. on Selected Areas in Commun., vol. 14, pp. 761-762, 1996.
[15] S. Su, L. Jau, and J. Lenart, “A review on classification of optical switching systems,” IEEE Commun. Mag., vol. 24, no. 5, pp. 50-55, 1986.
[16] T.-H. Wu, Fiber network service survivability, New York: Artech House, 1992.
[17] O. Gerstel and R. Ramaswami, “Optical layer survivability—an implementation perspective,” IEEE JSAC, pp.1885-99, 2000.
[18] B. Rajagolapan, D. Pendarakis, D. Saha, R. S. Ramamoorthy, and K. Bala,, “IP over optical networks: architectural aspects,” IEEE Commun. Mag., vol. 38, pp. 94-102 Sept. 2000.
[19] E. G. Rawson, “The Fibernet II Ethernet-compatible fiber-optic LAN,” J. Lightwave Technology, vol. LT-3, no. 5, pp. 496-501, 1985.
[20] E. Modiano, “WDM-based packet networks,” IEEE Commun. Mag., vol.37, pp.130-35, Mar.1999.
[21] A. Marincic and V. Acimovic-Raspopovic, “Evolution of WDM optical networks,” 5th TELSIKS Conference, vol. 2, pp. 473-480, 2001.
[22] S. Tariq, M.K. Dhodhi, J.C. Palais, and R. E. Ahmed, “Next generation DWDM network: demands, capabilities and limitations,” Proc. on Electrical and Computer Engineering Conference, vol. 2, pp. 1003-1007, 2000.
[23] I. P. Kaminow, “Non-coherent photonic frequency-multiplexed access networks,” IEEE Network, pp. 4-12, 1989
[24] M. Gerla, P. Rodrigues, and C. W. Yeh, “Token-based protocols for high-speed optical-fiber networks,” J. Lightwave Technol., vol. LT-3, no. 3, pp. 449-466, 1985.
[25] V. Mizrahi, S. Alexander, J. Berthold, S. Chaddick, and W. Jones, “The future of WDM systems,” ECOC’97, no. 448, pp. 137-141, Sept. 1997.
[26] R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET:multiwavelength optical networking,” J. Lightwave Technol., vol. 14, pp. 1349-1355, 1996.
[27] C. H. Kim, C.H. Lee, and Y. C. Chung, “Bidirectional WDM self-healing ring network based on simple bi-directional add/drop amplifier models,” IEEE Photon. Techno. Lett., vol. 10, pp. 1340-1342,1998.
[28] J. W. Ready and J. R. Jones, “Methods of collision detection in fiber optic CSMA/CD networks,” IEEE J. on Selected Areas in Commun., vol. SAC-3, no. 6, pp. 890-896, 1985.
[29] M. Medard and S. Lumetta, “Architectural issues for robust optical access,” IEEE Commun. Mag., pp. 116122, July 2001.
[30] H. lu, C. Blaauw, T. Makino, “High-temperature single-mode operation of 1.3-/spl mu/m strained MQW gain-coupled DFB lasers,” IEEE Photonics Technol. Lett., vol. 7, pp. 611 -613, June 1995.
[31] Z. Wang, D. B. Darby, P. Whitney, R. Panock, and D. Flanders, “High speed, ultra-low noise, tensile strained InGaAlAs MQW lasers emitting at 1300 nm for optical communication and microwave applications,” Electronics Lett., vol. 30, pp. 1413-1414, Aug. 1994.
[32] A. Takemoto, H. Wantanabe, Y. Nakajima, Y. Sakakibara, S. Kakimoto, J. Yamashita, T. Hatta, and Y. Miyake, “Distributed feedback laser diode and module for CATV systems,” IEEE J. Selected Area Commun., vol. 8, pp. 1359-1364, Sep. 1990.
[33] K. Y. Lau, “Lasers for lightwave systems,” Tutorial, Conf. Optical Fiber Commun., 1990.
[34] W. I. Way, “Subcarrier multiplexed lightwave system design considerations for subscriber loop applications,” IEEE J. Lightwave Technol., vol. 7, pp.1806-1818, Nov. 1989.
[35] R. G. Smith and S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for optical Communications, Chapter 4, Springer-Verlag, New York, 1980.
[36] A. Yariv, Optical Electronics, Fourth Edition. New York: Holt, Rinehart and Winston, 1991.
[37] C. A. Burrus, J. E. Bowers, and R. S. Tucker, “Improved very-high-speed packaged InGaAs pi-n punch-through photodiode,” Electron. Lett., vol. 21, pp. 262-263, 1985.
[38] A. Takemoto, H. Watanabe, Y. Nakajima, Y. Sakakibara, S. Kakimoto, J. Yamashita, T. Hatta, and Y. Miyake, “Distributed feedback laser diode and module for CATV system,” IEEE J. on selected area in communications, vol. 8, no. 7, 1990.
[39] Q. Shi, R. S. Burroughs, and D. Lewis, “An alternative model for laser clipping-induced nonlinear distortion for analog lightwave CATV system,” IEEE Photonic. Lett., vol. 4, no. 7, 1992.
[40] T.-P. Lee, “Recent advances in long-wavelength semiconductor lasers for optical communication,” Proc. IEEE, vol. 79, no. 3, pp.253-276, 1991."
[41] A. J. Rainal, “Laser intensity modulation as a clipped gaussian process,” IEEE Trans. on Communication, vol. 43, no. 2/3/4, 1995.
[42] M.-C. Wu, P.-Y. Chiang, and W. I. Way, “On the validity of using CW tones to test the linearity of multichannel M-QAM subcarrier multiplexed lightwave systems,” IEEE Photonics Technol. Lett., vol. 12, no. 4, 2000.
[43] C. F. Lam, “A simplified model for estimating the capacity limit of an optical link in transporting multichannel M-QAM signals,” IEEE Photon. Technol. Lett., vol. 12, no. 11, pp. 1579-1581, Nov. 2000.
[44] D. W. Faulkner, D. B. Payne, J. R. Stern, and J. W. Balance, “Optical networks for local loop applications,” J. of Lightwave Technol., vol. 7, pp. 1741-1749, 1989.
[45] C. Desem, “Optical interference in subcarrier multiplexed system with multiple optical carriers,” IEEE J. select. Areas Commun., vol. 8, pp. 1290-1295, Sept. 1990.
[46] C. Desem, “Measurement of optical interference due to multiple optical carriers in subcarrier multiplexing,” IEEE Photon. Technol. Lett., vol. 3, pp. 387-389, Apr. 1991.
[47] T. H. Wood and N. K. Shankaranarayanan, “Operation of a passive opticalnetwork with subcarrier multiplexing in the presence of optical beat interference,” J. Lightwave Technol., vol. 11, pp.1632-1640, Oct. 1993.
[48] R. D. Feldman, T. H. Wood, G. Raybon, and R. F. Austin, “Effect of optical beat interference on the dynamic range of a subcarrier multiple access passive optical network using fabry-perot lasers,” J. Lightwave Technol., vol. 14, pp. 711-715, May 1996.
[49] S. L. Woodward, X. Lu, and A.H. Gnauck, “Bidirectional, subcarrier-multiplexed transmission using 1.3 µm fabry-perot lasers,” IEEE Photon. Technol. Lett., vol. 9, pp. 1409-1411, Oct. 1997.
[50] W. P. Lin, “Reducing multiple optical carries interference in broadband passive optical networks,” IEEE Photon. Technol. Lett., vol. 9, pp. 368-370, May 1997.
[51] W. P. Lin, “A cost-effective broadband passive optical network achieved by reducing optical beat interference,” Microwave and Optical Tech. Lett., vol. 14, pp. 255-258, Mar. 1997.
[52] I. Yamashita, “The latest FTTH technologies for full service access networks,” IEEE Asia Pacific Conference on Circuits and Systems’96, pp. 263-268, Nov. 1996.
[53] A. Memiya, T. Maekawa, K. Haga, and N. Tamaki, “Low cost FTTH system based on PDS architecture,” IEEE GLOBE COM’97, vol. 2, pp. 878-882, 1997.
[54] T. H. Wood, G. C.Wilson, R. D. Feldman, and J. A. Stiles, “FiberVista: a cost-effective fiber-to-the-home (FTTH) system providing broad-band data over cable modems along with analog and digital video,” IEEE Photo. Tech. Lett., vol. 114, pp. 475-477, Apr. 1999.
[55] T.-H. Wu and R. C. Lau, “A class of self-healing ring architectures for SONET network application,” IEEE Trans. Commun., vol. 40, pp. 1746-1756, Nov. 1992.
[56] C. Desem, “Optical interference in subcarrier multiplexed system with multiple optical carriers,” IEEE J. select Areas Commun., vol. 8, pp.1290-1295, Sept. 1990.
[57] T. H. Wood and N. K. Shankaranarayanan, “Operation of a passive optical network with subcarrier multiplexing in the presence of optical beat interference,” J. Lightwave Technol., vol. 11, pp. 1632-1640, Oct. 1993.
[58] R. D. Feldman, T. H. Wood, G. Raybon, and R. F. Austin, “Effect of optical beat interference on the dynamic range of a subcarrier multiple access passive optical network using fabry-perot lasers,” J. Lightwave Technol., vol. 14, pp. 711-715, May 1996.
[59] S. L. Woodward, X. Lu, T.E. Darcie, and G. E. Bodeep, “Reduction of optical-beat interference in subcarrier networks,” IEEE Photo. Technol. Lett., vol., 8, pp. 649-696, May 1996.
[60] R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photo Technol. Lett., vol. 8, pp. 116-118, Jan. 1996.
[61] W.-P. Lin, “Reducing multiple optical carries interference in broadband passive optical networks,” IEEE Photon. Technol. Lett., vol. 9, pp. 368-370, Mar. 1997.
[62] N. J. Frigo, M. R. Phillips, and G. E. Bodeep, ”Clipping distortion in lightwave CATV systems: models, simulations, and measurement,” J. Lightwave Technol., vol. 11, pp. 138-146, Jan. 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top