(3.231.166.56) 您好!臺灣時間:2021/03/08 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊秋蓮
研究生(外文):Chiu-Lien Yang
論文名稱:快速光學響應液晶元件之動態機制研究
論文名稱(外文):Study on the dynamic mechanism of liquid crystal devices with fast optical reponse
指導教授:王淑霞
指導教授(外文):Shu-Hsia Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:173
中文關鍵詞:液晶快速響應流動效應
外文關鍵詞:liquid crystalfast responseflow effect
相關次數:
  • 被引用被引用:6
  • 點閱點閱:583
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
光學響應時間太慢是目前液晶光學元件的主要瓶頸,除了p-cell(或OCB-cell)外一般液晶顯示器(LCD)無法達到動畫顯示需求(響應時間<16.7豪秒),如典型TN TFT-LCD的響應時間為30~50豪秒。雖然 p-cell在bend state下具快速光學響應,但讓其轉變到Bend state耗時數分鐘,且bend state在低電壓下並不穩定,使得p-cell一直無法實用。利用實驗和理論推演計算,我們深入且完整的研究p-cell及3p/2-cell的快速響應機制,並且設計了一個具快速光學響應且穩定的twisted p-cell,也進一步提昇3p/2-cell的光學響應速度。另外我們也解釋了光學響應較慢的VA-90°, VA-180°以及VA-270°液晶元件的機制。
Liquid crystal devices have been widely used in our daily life, however the drawback of slow response limits the application of liquid crystal devices (such as true video-rate TV). Recently, the p-cell or OCB-cell had drawn consideration. However, the bend state of p-cell is not stable at low voltage. Therefore it takes a long warm-up time before working this cell and there are domains emerge between the pixels to damage the image quality when working it. We investigated the fast-response mechanism of p-cell and 3p/2-cell in detail. And designed a twisted p-cell witch possesses fast optical response as p-cell but without the unstable problem. We also improved the optical response of 3p/2-cell to 2.0 ms. Finally we explained the slow response mechanism of VA-90°, VA-180° and VA-270°.
Contents
Chinese abstract (摘要) i
Abstract iv
Chinese acknowledgements (致謝) vii
Acknowledgements viii
Contents ix
List of figures xiii
List of tables xxv
List of symbols xxvii
Chapter 1 Introduction 1
1.1 Typically liquid crystal devices 2
1.2 Properties of liquid crystal 5
1.3 Jones matrix method 11
1.4 Estimate of response time in the pure rotational system 15
1.5 Influence of the flow effect on the dynamics of liquid crystal devices 17
1.6 Definition of optical response time 18
References of chapter 1 21
Chapter 2 Dynamic theory and numerical calculation 23
2.1 Dynamic theory 23
2.1.2 Continuous theory of liquid crystal 23
2.1.2 Static director distribution-“Euler-Lagrange equation” 24
2.1.3 Dynamic theory-“Erickson-Leslie theory” 27
2.1.4 Dynamic deformation equation ignore the flow effect 30
2.1.5 1-D Dynamic deformation equations 31
2.1.6 The relation of viscous coefficients 32
2.2. Numerical calculation 33
2.2.1 1-D dynamic equations 33
2.2.2 The numerical method 34
References of chapter 2 40
Chapter 3 Dynamics of p-cell liquid crystal devices 41
3.1 Sample preparation and measured method 42
3.2 State transition of p-cells 46
3.3 Electro-optical properties 51
3.4 Dynamic properties 54
3.5 Simulated results 58
3.6 Conclusion 62
References of chapter 3 63
Chapter 4 Experimental method and results of the fast optical response twisted nematic liquid crystal p-cells 65
4.1 Sample preparation 65
4.2 Measurement method of alignment layer thickness 72
4.3 Measurement method of pretilt angle 72
4.4 Measurement method of phase retardation and cell gap 74
4.5 Experimental results of electro-optical properties 75
4.6 Summary of the experimental results 83
References of chapter 4 84
Chapter 5 Numerical calculation and results of the fast optical response twisted nematic liquid crystal p-cells 85
5.1 Numerical calculation 85
5.2 Calculated results 89
5.3 Corresponding director distribution 89
5.3.1 Director distribution in the optical rising process 91
5.3.2 Director distribution in the optical decay process 95
5.4 Transient flow velocity distribution 98
5.5 Summary of the calculated results 103
References of chapter 5 104
Chapter 6 Dynamic mechanism and application consideration of the fast optical response twisted nematic liquid crystal p-cells 105
6.1 Analysis of dynamic mechanism 106
6.1.1 Dynamic mechanism in the optical rising process 106
6.1.2 Dynamic mechanism in the optical decay process 112
6.2 Consideration of application 115
6.3 Conclusion 116
References of chapters 6 116
Chapter 7 Optical response of the super twisted nematic liquid-crystal 3p/2 cells 117
7.1 Introduction 117
7.2 Experiment 118
7.3 Calculated results and theoretical analysis 125
7.4 Further improvement on the optical response 134
7.5 Conclusion 134
References of chapter 7 139
Chapter 8 Dynamics of the vertical-alignment liquid crystal modes 141
8.1 Introduction 141
8.2 Experiment 143
8.2.1 Experimental results of VA-90° Lcell 145
8.2.2 Experimental results of VA-180° Lcell 145
8.2.3 Experimental results of VA-270° Lcell 148
8.3 Simulation 150
8.3.1 Calculated results of VA-90° Lcell 151
8.3.2 Calculated results of VA-180° Lcell 157
8.3.3 Calculated results of VA-270° Lcell 162
8.4 Discussion and conclusion 166
References of chapter 8 169
Chapter 9 Conclusion
References
[1] Philip J. Bos and K. Rickey Koehler/Beran, Mol. Cryst. Liq. Cryst. 113, 329 (1984).
[2] T. Miyashita, C. -L Kuo, and T. Uchida, SID ‘95, 797 (1995).
[3] N. Nagae, T. Miyashita, T. Uchida, IDRC ‘00, 26 (2000).
[4] C. Z. van Doorn, J. Appl. Phys. 46, 3738 (1975).
[5] Dwight W. Berreman, J. Appl. Phys. 46, 3746 (1975).
[6] Shu-Hsia Chen and Li-Yi Chen, Appl. Phys. Lett. 75, 3491 (1999).
[7] Shinya Onda, Tetsuya Miyashita and Tatsuo Uchida, Asia Display ’98, 1055 (1998).
[8] Pochi Yei and Claire Gu, ‘Optics of liquid crystal displays’, Wiley Inter-science Publication, p.11 (1999)
[9] R. C. Jones, J. Opt. Soc. A. 31, 488(1941)
[10] Iam-Choon Khoo and Shin-Tson Wu, ‘Optics and nonlinear optics of liquid crystals’, World Scientific Publishing Co., 1993.
[11] P. G. de Gennes and J. Prost. ‘The physics of liquid crystals’. Clarendon Press, Oxford, 2nd ed., 1993.
[12] G. Labrunie and J. Robert, J. Appl. Phys., 44, 4869 (1973)
[13] E. Jakeman and E. FP. Raynes, Phys. Lett., 39A, 69 (1972)
[14] P. Pieranske et al., J. Phys. (Paris), 34, 35 (1973)
[15] F. Nakano et al., Jpn. J. Appl. Phys., 19, 659 (1980)
[16] H Kneppe et al., J. Chem. Phys., 77, 3203 (1982)
[17] F. Leenhouts, J. Appl. Phys., 58, 2180 (1985)
[18] S. T. Wu and C. S. Wu, J. Appl. Phys., 53, 1794 (1988)
[19] K. Tarume et al., Jpn. J. Appl. Phys., 9A, 2829 (1992)
[20] M. Oh-e and K. Kondo, Appl. Phys. Lett., 69, 623 (1996)
[21] C. Z. van Doorn, J. Appl. Phys. 46, 3738 (1975).
[22] Dwight W. Berreman, J. Appl. Phys. 46, 3746 (1975).
[23] S. Onda, T. Miyashita and T. Uchida, Asia Display ’98, 1055(1998).
[24] T. Z. Qian et al. Appl. Phys. Lett., 71, 596 (1997)
[25 ] Shu-Hsia Chen and Li-Yi Chen, Appl. Phys. Lett. 75, 3491 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3. 江文若著,WTO補貼暨平衡措施協定簡介,工業簡訊,第29期,民國88年10月,頁3-6。
2. 2. 牛惠之著,補貼與自由貿易-從GATT/WTO之補貼規範發展論國際環境補貼之現行法律地位,進口救濟論叢,第12期,民國87年6月,頁75-120。
3. 1. 于寧著,環境標誌勢將成為國際貿易障礙,環保標章簡訊,第一期,民國84年9月,頁10-14。
4. 12. 林淑芳著,政府採購法中綠色採購條款,環保標章簡訊,第十五期,1999年3月31日。
5. 10. 周天著,平衡稅制中補貼制度之研究,中原財經法學,第四期,民國87年12月,頁113-135。
6. 9. 宋華聰著,我國動物防疫檢疫法規及其策略,農政與農情,第104期,民國90年2月,頁40-47。
7. 8. 呂斯文著,食品衛生檢驗及動植物檢疫措施與風險分析,農政與農情,第107期,民國90年5月,頁44-50。
8. 7. 李舟生著,美國對關稅配額的看法,農政與農情,第68期,民國87年2 月,頁35-42。
9. 13. 康世申著,環保標章(Eco-Labelling)問題之探討,進口救濟論叢,第九期,民國85年12月,頁239-246。
10. 14. 陳香椿著,探討烏拉圭回合輸入許可發證程序協定並比較我國之進口簽審制度,東吳經濟商學學報,第15期,民國84年5月,頁169-195。
11. 17. 張文彬著,環保標章對貿易影響之探討,環保標章簡訊,第五期,民國85年9月,頁8-10。
12. 19. 楊崇悟著,原產地規則-關稅法規重要之一環,財稅研究,第32期,民國89年9月,頁122-135。
13. 20. 蔡宏明著,烏拉圭回合議題(3)--裝船前檢驗透明化,貿易週刊,第1477期,民國84年4月15日,頁11-13。
14. 21. 楊之遠、張宣武著,世界貿易組織環境標誌議題之討論進展,環保標章簡訊第十七期,1999年9月30日。
15. 23. 羅昌發著,GATT補貼及邊境之稅捐調整規範對環保之適用-以經濟工具處理環保所涉之貿易法問題,進口救濟論叢,第5期,民國83年12月,頁1-21。
 
系統版面圖檔 系統版面圖檔