跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃銘杰
研究生(外文):Ming-Chieh Huang
論文名稱:利用液晶元件之可調式光解多工器/濾波器/增益等化器之研究
論文名稱(外文):A Study of Liquid-Crystal-Based Tunable Optical Demultiplexers/Filters/Gain Equlizers
指導教授:潘犀靈
指導教授(外文):Ci-Ling Pan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:76
中文關鍵詞:液晶解多工器濾波器增益等化器
外文關鍵詞:Liquid-CrystalDemultiplexersFiltersGain Equlizers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們發展出利用液晶元件之可調光解多工器/濾波器。它是由準直鏡、削角入射光柵、成像透鏡、穿透式之液晶空間光調制器及作為輪出用的光纖陣列所組成。其光柵一階繞射光經過透鏡聚焦在液晶空間調制器與光纖陣列上。選取適當的液晶空間調制器像素使得想要的波長穿透並由光纖陣列所接收。在初步實驗中,12頻道波長解多工已展示。每一頻道中心波長針對國際電信聯盟所訂定頻道間距100GHz波長所設計。頻道串音小於-30 dB。平均1/3/30 dB 穿透頻寬分別是0.06/0.11/1.09 nm。頻道切換比最高可以達到22dB。不同之間的頻道可以交互切換,其上升下降時間分別大概是12及88ms。各頻道中心波長精確到 0.02 nm (儀器極限)。
我們可以利用可調光濾波器補償各頻道間功率光功率差,我們選擇兩個像素所其對應波長間峰值功率差原是17.9 dB,經獨立控制兩像素電壓,使得兩頻道波長功率差等化至0.3 dB以內(儀器極限)。

We have developed a liquid-crystal-based tunable optical demultiplexer/filter. It consists of a collimating lens, grazing-incident grating, image lens, a transmission-type liquid crystal spatial light modulator (LC-SLM), and fiber array for output. In this device, first-order diffracted signal light by the grating is directed to the image lens and focused on to the LC-SLM and fiber array. Selecting the appropriate LC-SLM pixels allows light of the desired wavelength to transmit into the fiber array. Demultiplexing into 12 channels is demonstrated in the initial experiment. The channels are designed according to the International Telecommunication Union (ITU) grid with channel spacing of 100 GHz. Channel crosstalk is less than —30 dB. The average 1dB, 3dB, and 30dB passbands of the demultiplexer/filter are 0.06 nm, 0.11 nm, and 1.09 nm, respectively. The extinction ratio can be as high as 22dB. Different channels can be switched with a rise and fall times of ~12 ms and 88 ms, respectively. The center wavelength of each channel is accurate to 0.02 nm (Instrument limited).
Liquid-crystal-based tunable optical filters can compensate for power difference between the channels. We selected two pixels corresponding to two wavelengths with peak-power difference of 17.9 dB. By independently controlling the voltage driving the two pixels, the output of the two channels can be equalized to within 0.3 dB (Instrument limited).

Chapter 1 Introduction
1.1 Background and motivation…..…………………………………………………1
1.2 The characteristics and various technologies of optical demultiplexers………..2
1.3 Objectives………………………………………………………………………11
1.4 Organization of the thesis………………………………………………………11
Chapter 2 Basic Principles
2.1 Wavelength demultiplexing principles…………………………………………12
2.1.1 Diffraction grating operation principles………………………………..12
2.1.2 Grating common mountings…………………………………………...14
2.1.3 Grating efficiency……………………………………………………...15
2.1.4 Theory of LC-based tunable optical demultiplexers and filters……… 16
2.1.5 Coupling into fiber issue……………………………………………….16
2.2 Liquid crystal spatial light modulator………………………………………….17
2.2.1 Three types of liquid crystal…………………………………………...17
2.2.2 Principles of twisted nematic liquid crystal (normally black mode)…..19
2.2.3 Construction of the LC-SLM…………………………………………..24
Chapter 3 Basic Concept and Demonstration of Experiments and Results Analysis
3.1 Basic design concept and demonstration of optical demultiplexers/filters using broadband light source…………………………………………………………30
3.2 Basic concept and demonstration of tunable optical demultiplexers/filters by using broadband light source………………………….……………………….33
3.3 Basic concept and demonstration of tunable optical demultiplexers/filters by using tunable laser source……………………………………………………...39
Chapter 4 Gain Equalization
4.1 Twisted nematic liquid crystal transmission curve………………………….....46
4.2 Demonstration of power equalization………………………………………….49
Chapter 5 Liquid-Crystal-Based Tunable Optical Demultiplexers Experiments and Results Analysis
5.1 Basic optical demultiplexer experiments………………………….…………...54
5.2 Liquid-crystal-based tunable optical demultiplexers…………………………..58
5.2.1 The characteristics of LC-SLM (new design)………………………… 58
5.2.2 Tunable optical demultiplexer experiment…………………………….61
5.3 2 channel switching of tunable optical demultiplexer experiment…………….67
Chapter 6 Conclusions
6.1 Conclusions………………………….…………...............................................73
6.2 Future works…………………………………………………………………...74
Reference………………………………………………………………………….75

[1] F. Zhao, J. Qiao, R. Chen et al., “Reliable grating-based wavelength division
(de)multiplexers for optical networks,” Opt. Eng., vol. 40, pp. 1204-1211, 2001.
[2] A. E. Willner, “Mining the optical bandwidth for a terabit per second,” IEEE Spectrum., vol. 34, pp. 32-41, 1997.
[3] G. R. Hill, “Wavelength domain optical network techniques,” Proc. IEEE., vol. 78, pp. 121-132, 1990.
[4] M. J. O’Mahoney, “Optical multiplexing in fiber networks: Progress in WDM and OTDM,” IEEE Commun. Mag., vol. 33, pp. 88-, 1995.
[5] G. E. Keiser , “A review of WDM technology and applications,” Optical Fiber Technology, vol. 5, pp. 3-39, 1999.
[6] R. E. Wagner, R. C. Alfferness et al , “MONET: Multiwavelength opical networking,” IEEE Photon. Technol. Lett., vol. 14, pp. 1349-1355, 1996.
[7] J. Qiao, F. Zhao, R. Chen et al., “32-channel 100-GHz-spaced demuliplexer for metropolitan area networks ,” Opt. Eng., vol. 40, pp. 1255-1259, 2001.
[8] J. Qiao, F. Zhao, J. Liu, and R. Chen, “Dispersion-enhanced volume hologram for dense wavelength-division demultiplexer,” IEEE Photon. Technol. Lett., vol. 12, pp. 1070-1072, 1996.
[9] Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), Place des nations, CH-1211 Geneva 20, Switzerland (http://www.itu.ch).
[10] ITU-T Recommendation G.692, “Opical interfaces for multichannel systems with optical amplifiers,” (1997).
[11] Bruce Nyman, Mark Farries, and Calvin Si, “Technology trends in dense WDM demultiplxer,” Optical Fiber Technology, vol. 7, pp. 255-274, 2001.
[12] J. M. Senior et al., “Device for wavelength multiplxing and demultiplxing,” IEE Proc., vol. 136, pp. 183-202, 1989.
[13] Winaer et al., “Singlemode and multimode all-fiber directional couplers for WDM,” Appl. Opt., vol. 20, pp. 3128-3135, 1981.
[14] Sano et al., “A 4-wavelength optical multi/demultiplexer for WDM subscriber loop systems using analog baseband video transmission,” IEEE J. Lightwave Technol., vol. 4, pp. 631-639, 1986.
[15] Nosu et al., “Multireflection optical muti/demultiplexer using optical filter,” Electron Lett., vol. 15, pp. 414-415, 1979.
[16] K.Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel array-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett., vol. 13, pp. 1182-1184, 2001.
[17] A. Kaneko, A. Sugita, and K. Okamoto, “Recent progress on arrayed waveguide gratings for DWDM applications,” IEICE Trans. Electron., vol. E83-C, pp. 860-868, 2000.
[18] R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photon. Technol. Lett., vol. 12, pp. 1343-1345, 2000.
[19] F. N. Timofeev, E. G. Churin, P. Bayvel, V. Mikhailov, D. Rothnie, J. E. Midwinter, “Transmission passband, optical crosstalk and cascadability of free-space concave grating demultiplexer for dense WDM networks,” Optical and Quantum Electronics, Vol. 31, pp. 227-236, 1999.
[20] K. A. McGreer, “Tunable planar concave grating demultiplexer,” IEEE Photon. Technol. Lett., vol. 8, pp. 551-553, 1996.
[21] Z. J. Sun, K. A. McGreer, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett., vol. 10, pp. 90-92, 1998.
[22] Chi-Luen Wang and Ci-Ling Pan, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity”, Appl. Phys. Lett, vol. 64, pp. 3089-3091, 1994.
[23] Ci-Ling Pan, Shang-Huang Tasi, Ru-Pin Pan, Chia-Reng Sheu and S.C.Wang, “Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity”, Electron Lett., vol. 35, pp. 1472-1473, 1999.
[24] Jun-Yu Chen, Liquid-crystal-based tunable optical filtering devices for DWDM application, Master Thesis, IEO of NCTU Taiwan, 2001.
[25] Robert P, F. Roeske, Jr. and D. E. Smith, “Fiber-optic spectral-steak equalizer ,” Rev. Sci. Instrum., vol. 56, pp. 1356-1362, 1985.
[26] Garland Best et al, “Shedding light on hybrid optics: A tutorial in coupling,” Optics & Photonics News., pp. 30-34, Feb., 1999.
[27] Pochi Yeh and Claire Gu, Optics of Liquid Crystal Display, Wiley, 1999.
[28] Chrong-Hann Niou, Electronically tunable multi-wavelength active mode-locked semiconductor laser with a liquid crystal pixel mirror , Master Thesis, IEO of NCTU Taiwan, 2001.
[29] Garland Best et al, “Development of etalon-type gain-flattening filter”, Furukawa Reviews., pp. 53-58, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. (九)王文宇,〈公司分割法制之研究─兼論金融控股公司法草案之分割規定〉,月旦法學雜誌,第七三期,民國九十年六月。
2. (九)王文宇,〈公司分割法制之研究─兼論金融控股公司法草案之分割規定〉,月旦法學雜誌,第七三期,民國九十年六月。
3. (六)王文宇,〈我國銀行兼營證券業務法制之研究〉,經社法制論叢,第二四期,民國八十八年七月。
4. (六)王文宇,〈我國銀行兼營證券業務法制之研究〉,經社法制論叢,第二四期,民國八十八年七月。
5. (六)王文宇,〈我國銀行兼營證券業務法制之研究〉,經社法制論叢,第二四期,民國八十八年七月。
6. (五)王文宇,〈我國公司法購併法制之檢討與建議─兼論金融機構合併法〉,月旦法學雜誌,第六八期,民國九十年一月。
7. (五)王文宇,〈我國公司法購併法制之檢討與建議─兼論金融機構合併法〉,月旦法學雜誌,第六八期,民國九十年一月。
8. (五)王文宇,〈我國公司法購併法制之檢討與建議─兼論金融機構合併法〉,月旦法學雜誌,第六八期,民國九十年一月。
9. (四)王志誠,〈企業併購法制與控股公司之創設〉,月旦法學雜誌,第六八期,民國九十年一月。
10. (四)王志誠,〈企業併購法制與控股公司之創設〉,月旦法學雜誌,第六八期,民國九十年一月。
11. (四)王志誠,〈企業併購法制與控股公司之創設〉,月旦法學雜誌,第六八期,民國九十年一月。
12. (二)王志誠,〈金融控股公司之經營規劃與監理機制〉,政大法學評論,第六四期,民國八十九年十二月。
13. (二)王志誠,〈金融控股公司之經營規劃與監理機制〉,政大法學評論,第六四期,民國八十九年十二月。
14. (二)王志誠,〈金融控股公司之經營規劃與監理機制〉,政大法學評論,第六四期,民國八十九年十二月。
15. (一)王麗玉,〈董事會違法決議之法律效果〉,中華法學,第三期,民國八十二年一月。