跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游博文
研究生(外文):Bor-Wen You
論文名稱:THz輻射偵測用砷離子佈植砷化鎵偶極天線之研製
論文名稱(外文):Fabrication and Characterization of GaAs: As+ Dipole antennas for Detection of THz Radiation
指導教授:潘犀靈
指導教授(外文):Ci-Ling Pan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:60
中文關鍵詞:次毫米波砷離子佈植砷化鎵偶極天線
外文關鍵詞:THzGaAs: As+dipole antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文在探討多重砷離子佈植(50、100、200Kev,1016 ions/cm2)砷化鎵薄膜材料,經過爐管退火製程600℃,時間分別長達30分鐘以及60分鐘,以此基版所製造之偶極天線在次毫米波偵測上的特性。
由於次毫米波的電場屬於低電場源,所以,金屬與半導體間的接面特性,影響THz輻射的偵測結果 ; 在暗電流量測結果中可發現,退火長達60分鐘的多重砷離子佈植砷化鎵基板以及半絕緣性砷化鎵基板有明顯的蕭特基能障,此從退火60分鐘砷離子佈植砷化鎵在53V有電流遽增,及半絕緣性砷化鎵在36V有電流遽增等處來判定 ; 而對於退火30分鐘的多重砷離子佈植砷化鎵而言,金屬與半導體間則具有良好的歐姆接面,將三種基材製造的偶極天線,用於我們所架設的光導取樣系統作為偵測器,其中只有退火30分鐘的多重砷離子佈植砷化鎵的訊號夠大而偵測到THz輻射波,依此判斷應與歐姆接面的存在有關。
THz 輻射源,主要有兩種來源產生,一為光導天線,另一為非線性晶體的光整流特性所產生。在我們所架設的光導取樣系統中,很明顯地,光整流效應的頻寬(1.5THz)大於光導天線所產生THz輻射的頻寬(0.5THz) ,同時亦證明此光導取樣系統在130飛秒的激發脈衝下已達到系統極限。
最後,我們同時比較低溫成長砷化鎵,多重砷離子佈植砷化鎵,與半絕緣性砷化鎵在THz 輻射偵測上的差異,可發現多重砷離子佈植砷化鎵在訊噪比 (~100)上比低溫長成砷化鎵(~10000)低兩個數量級,而比半絕緣性砷化鎵(~20)大五倍。在偵測方面,以10um<110>銻化鋅為發射源,低溫長成砷化鎵偵測器可達40THz,而多重砷離子佈植砷化鎵可達30THz,而半絕性砷化鎵則只達到20 THz ; 由於多重佈植砷化鎵在製程上比低溫長成砷化鎵更經濟,而且在偵測輻射波形上與低溫長成偵測的頗有雷同,因此在次毫米波偵測應用上具有相當淺力。

We study the multi-arsenic-implanted GaAs (50、100、200Kev,1016 ions/cm2) after furnace annealing for 30 minutes and 60 minutes at 600℃, used as the substrates of dipole antennas to detect THz radiation. Since the electric field, biased by THz radiation and belongs to the low electric field, the contact between the metal and semiconductor plays an important role.
According to the current surge occurs at the 53V and 36V in the multi-GaAs: As+ after annealing 60 minutes and SI GaAs, respectively. The Schottky barrier occurs in the multi-GaAs: As+ after annealing 60 minutes and semi-insulating GaAs. However, the contact between the metal and semiconductor, which is GaAs: As+ after annealing 30 minutes, is ohmic contact. And then, the THz radiation is detected by the detector based on GaAs: As+ after annealing 30 minutes.
Generally speaking, the THz emitter is photoconductive antennas or electro-optical crystals. THz radiation measured from the photoconductive sampling system built by us can be differentiated from the two kinds of emitters. Observably, the spectrum of THz radiation, which is 1.5THz, generated from optical rectification is broader than that of photoconductive antennas, which is about 0.5THz. And it is demonstrated that the optical setup reaches the limit of the system as the exciting pulse width is 130fs.
Finally, the photoconductive dipole antennas based on SI GaAs, LT-GaAs, and multi-GaAs: As+ are compared on the THz waveforms and the Fourier transformed spectrums. It is observed that the SN ratio of multi-GaAs: As+ (~100) is lower than that of LT-GaAs (10000), but larger than SI GaAs (~20) about five tomes. In detection, the spectrum detected by LT-GaAs-based dipole antenna is 40THz as the 10um<110> ZnTe is emitter. At the same situation, the spectrum detector by multi-GaAs: As+-based and SI-GaAs-based dipole antennas are 30 THz and 20THz, respectively.
Since the process of preparation for multi-GaAs: As+ is easier than LT-GaAs and the detected THz waveform is similar to that detected by LT-GaAs, multi-GaAs: As+ may be the anticipated photoconductor in THz detection.

Chinese abstract………………………………………………………………………i
English abstract……………………………………………………………………....ii
Acknowledgement…………………………………………………………………...iii
Content….……………………………………………………………………………iv
Graphic content……………………………………………………………………....v
Chapter 1 Introduction
1.1 Background and motivation…………………………………….…..1
1.2 Objectives…………………………………………………………….4
1.3 Organization of the thesis……………………………………….…...4
Chapter 2 Sample Preparation
2.1 The procedure of fabricating process……………………………...5
2.2 The procedure of fabricating process……………………………...6 2.2.1 Sample Preparation………………………………..………...6
2.2.2 Lift-off procedure……………………………………..……..8
Chapter 3 Basic Theory and Conception
3.1 Current-surge mode…………………………………..…………...13
3.2 Optical rectification……………………………..….…………18
3.2.1 Historical background……………………………………..18
3.2.2 The theory of optical rectification…………………………20
3.3 Photoconductive detection…………………………….…...……..32
Chapter 4 Measurement
4.1 The setup of photoconductive sampling………………………...35
4.2 The electric measurement of the dipole antenna………………40
Chapter 5 The Experimental Result and Analysis
5.1 Electric characteristics………………………………………….41
5.2 Photoconductive sampling……………………………………...44
5.3 Ultrafast Photoconductive Detectors Based on SI GaAs, LT-GaAs, and GaAs: As+……………………………………….51
Chapter 6 Conclusions
6.1 Conclusions……………………………………………………...59
6.2 Future works…………………………………………………….60
Reference…………………………………………………………………………….61

[1] X.C. Zhang, IEEE/LEOS News Letter, 7-4, pp.14, 1993.
[2] G.Mourou, C.V. Stancampiano and D. Blumenthal, Appl. Phys.Lett., 38, pp.470, 1981.
[3] A.P. DeFonzo, M. Jarwala and C.R. Lutz, Appl. Phys. Lett., 50, pp.1155, 1987.
[4] D.H. Auston, K.P. Cheung and P.R. Smith, Appl. Phys. Lett., 45, pp.284, 1984.
[5] Ch.Fattinger and D. Grischkowsky, Appl. Phys. Lett., 53, pp.1480, 1988; Appl.Phys. lett., 53, pp.490, 1989.
[6] P.R. Smith, D.H. Auston, and M.C. Nuss, IEEE J. Quantum Electron. 24, pp.255, 1988.
[7] Ch.Fattinger and D. Grischkowsky, Appl. Phys. Lett., 54, pp.490, 1989.
[8] B.B Hu, J.T. Darrow, X.-C. Zhang, D.H. Auston and P.R. Smith, Appl. Phys. Lett., 56, pp.886, 1990.
[9] J.T. Darrow, B.B Hu, X.-C Zhang, D.H. Auston, Opt. Lett., 15, pp.323, 1990.
[10] D.Krokel, D. Grischkowsky and M. B. Ketchen, ”Subpicosecond electrical pulse generation using photoconductive switches with long carry lifetimes,” Appl. Phys. Lett., 54, pp.1046-1047, 1989.
[11] N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface,” Appl. Phys. Lett., 58, pp.222-224, 1991.
[12] Masahiko Tani, K.Sakai and H.Mimura, “Ultrafast photoconductive detectors based on semi-insulating GaAs and InP,” Jpn. J. Appl. Phys., 36, pp. L1175-L1178, 1997.
[13] M. van Exter, Ch.Fattinger and D. Grischkowsky, Appl. Phys. Lett., 55, pp.337, 1989.
[14] See for example, P.Uhd Jepsen, R.H. Jacobsen, and S.R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B., 11, pp.2424, 1996.
[15] See for example, A.C. Warren, N. Katzenellenbogen, D. Grischkowsky, J.M. Woodall, M.R. Melloch and N.Otsuska: Appl. Phys. Lett., 58, pp.1512, 1991.
[16] C.S. Wong, J.M. Dai, and H.K.Tsang, “Photoconductive detection of millimeter waves using proton implanted GaAs,” Appl. Phys. Lett., 75,No.6, pp.745, 1999.
[17] S.G. Park, M.r. Melloch, “Anysis of terahertz waveforms measured by photoconductive and electrooptic sampling,” IEEE J. Quantum Electron. 35, No.5, pp.810, 819,1999.
[18] G..R. Lin, C.L. Pan, “Characterization of optically excited terahertz radiation from arsenic-ion-implanted GaAs,” Appl. Phys. B,72(2):151_155.
[19] G..R. Lin,W.C. Chen, C.S. Chang, and C.L. Pan, “Electrical characterization of arsenic-ion-implanted semi-insulating GaAs by current-voltage measurement,” Appl. Phys. Lett., 65,No.25, pp.3272-3274, 1994.
[20] W.C. Chen, G.R. Lin, and C.S. Chang, “The dynamics of thermal annealing on arsenic-ion implanted semi-insulating GaAs,” Jpn. J. Appl. Phys., 35, Pt.2, No.2B, pp.L192-L194, 1996.
[21] S. Kono, M. Tani, Ping Gu, and K. Sakai, “Detection of up to 20THz with a low-temperatur-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett., 77,No.25, pp.4104-4106, 2000.
[22] M. Tani, S. Matsuura, K. Sakai, and S.I. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Apply. Optics, 36,No. 30, 1997.
[23] S. Kono, M. Tani, and K. Sakai, “Ultrabroadband photoconductive detection: comparison with free-space electro-optic sampling,” Appl. Phys. Lett., 79,No.7, pp.898-900, 2001.
[24] Jen-Chieh Tsai, “ A comprehensive study of THz generation from arsenic-ion implanted GaAs photoconductive antennas,” Master thesis, IEO of NCTU Taiwan, 2001.
[25] Yen-Chih Li, “ Study of single and multi-dose arsenic-ion0implanted GaAs photoconductive device,” Master thesis, IEO of NCTU Taiwan, 1999.
[26] P.K. Benicewicz, J.P. Robert, and A.J. Taylor, “Scaling of terahertz radiation from large-aperture biased photoconductors,” J. Opt. Soc. Am. B., 11, No.12, pp.2533, 1994.
[27] Gong-Ru Lin, “Arsenic-implanted GaAs — a new class material for ultrafast optoelectronic application,” Doctor thesis, IEO of NCTU Taiwan, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top